In Situ X-ray Diffraction of an Arc Weld Showing the Phase Transformations of Ti and Fe as A Function of Position in the Weld Performed at a Synchrotron

1994 ◽  
pp. 479-482 ◽  
Author(s):  
Joe Wong ◽  
J. W. Elmer ◽  
P. A. Waide ◽  
E. M. Larson
2005 ◽  
Vol 20 (02) ◽  
pp. 94-96 ◽  
Author(s):  
Thomas N. Blanton ◽  
Swavek Zdzieszynski ◽  
Michael Nicholas ◽  
Scott Misture

2020 ◽  
Vol 22 (20) ◽  
pp. 11713-11723 ◽  
Author(s):  
Abhijeet Gaur ◽  
Matthias Stehle ◽  
Kristian Viegaard Raun ◽  
Joachim Thrane ◽  
Anker Degn Jensen ◽  
...  

Combination of in situ multi-edge X-ray absorption spectroscopy at the Mo K- and Fe K-edges in combination with X-ray diffraction successfully uncovered structural dynamics and phase transformations of an iron molybdate catalyst during redox cycling.


2008 ◽  
Vol 476 (1-2) ◽  
pp. 60-68 ◽  
Author(s):  
Fabien Bruneseaux ◽  
Elisabeth Aeby-Gautier ◽  
Guillaume Geandier ◽  
Julien Da Costa Teixeira ◽  
Benoît Appolaire ◽  
...  

2012 ◽  
Vol 196 ◽  
pp. 217-224 ◽  
Author(s):  
Florent Lebreton ◽  
Renaud C. Belin ◽  
Thibaud Delahaye ◽  
Philippe Blanchart

2019 ◽  
Vol 3 (4) ◽  
pp. 25
Author(s):  
Zélie Tournoud ◽  
Frédéric De Geuser ◽  
Gilles Renou ◽  
Didier Huin ◽  
Patricia Donnadieu ◽  
...  

The phase transformations occurring during the heat treatments leading to transformation-induced plasticity (TRIP)-aided bainitic steel have been investigated in-situ by high-energy X-ray diffraction (HEXRD) conducted with synchrotron light at 90 keV. Direct microstructure characterization has been performed by electron microscopy using electron backscatter diffraction and orientation and phase mapping in a transmission electron microscope. HEXRD data allow the quantification of the evolution of the austenite phase fraction with the heat treatments, as well as its carbon content and the fraction of carbides, from the lattice parameter evolution. It is shown that different combinations of austenite fraction and carbon content can be reached by adjusting the heat treatment temperature.


2008 ◽  
Vol 72 (2) ◽  
pp. 683-695 ◽  
Author(s):  
J. P. Perrillat

AbstractSynchrotron X-ray diffraction (XRD) is a powerful technique to study in situ and in real-time the structural and kinetic processes of pressure-induced phase transformations. This paper presents the experimental set-up developed at beamline ID27 of the ESRF to perform time-resolved angle dispersive XRD in the Paris-Edinburgh cell. It provides a practical guide for the acquisition of isobaric-isothermal kinetic data and the construction of transformation-time plots. The interpretation of experimental data in terms of reaction mechanisms and transformation rates is supported by an overview of the kinetic theory of solid-solid transformations, with each step of data processing illustrated by experimental results of relevance to the geosciences. Reaction kinetics may be affected by several factors such as the sample microstructure, impurities or differential stress. Further high-pressure kinetic studies should investigate the influence of such processes, in order to acquire kinetic information more akin to natural or technological processes.


Sign in / Sign up

Export Citation Format

Share Document