Information Theoretic Interpretations of von Neumann Entropy

Author(s):  
Richard Jozsa
2013 ◽  
Vol 22 (12) ◽  
pp. 1342030 ◽  
Author(s):  
KYRIAKOS PAPADODIMAS ◽  
SUVRAT RAJU

We point out that nonperturbative effects in quantum gravity are sufficient to reconcile the process of black hole evaporation with quantum mechanics. In ordinary processes, these corrections are unimportant because they are suppressed by e-S. However, they gain relevance in information-theoretic considerations because their small size is offset by the corresponding largeness of the Hilbert space. In particular, we show how such corrections can cause the von Neumann entropy of the emitted Hawking quanta to decrease after the Page time, without modifying the thermal nature of each emitted quantum. Second, we show that exponentially suppressed commutators between operators inside and outside the black hole are sufficient to resolve paradoxes associated with the strong subadditivity of entropy without any dramatic modifications of the geometry near the horizon.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Junaid ur Rehman ◽  
Hyundong Shin

Abstract We propose continuity bounds for the von Neumann entropy of qubits whose difference in purity is bounded. Considering the purity difference of two qubits to capture the notion of distance between them results into bounds which are demonstrably tighter than the trace distance-based existing continuity bounds of quantum states. Continuity bounds can be utilized in bounding the information-theoretic quantities which are generally difficult to compute.


Author(s):  
Igor Devetak ◽  
Andreas Winter

We study and solve the problem of distilling a secret key from quantum states representing correlation between two parties (Alice and Bob) and an eavesdropper (Eve) via one–way public discussion: we prove a coding theorem to achieve the ‘wire–tapper’ bound, the difference of the mutual information Alice–Bob and that of Alice–Eve, for so–called classical–quantum–quantum–correlations, via one–way public communication. This result yields information–theoretic formulae for the distillable secret key, giving ‘ultimate’ key rate bounds if Eve is assumed to possess a purification of Alice and Bob's joint state. Specializing our protocol somewhat and making it coherent leads us to a protocol of entanglement distillation via one–way LOCC (local operations and classical communication) which is asymptotically optimal: in fact we prove the so–called ‘hashing inequality’, which says that the coherent information (i.e. the negative conditional von Neumann entropy) is an achievable Einstein–Podolsky–Rosen rate. This result is known to imply a whole set of distillation and capacity formulae, which we briefly review.


2018 ◽  
Vol 16 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Shubhayan Sarkar

Quantum information-theoretic approach had been identified as a way to understand the foundations of quantum mechanics as early as 1950 due to Shannon. However, there hasn’t been enough advancement or rigorous development of the subject. In the following paper we try to find the relationship between a general quantum mechanical observable and von Neumann entropy. We find that the expectation values and the uncertainties of the observables have bounds which depend on the entropy. The results also show that von Neumann entropy is not just the uncertainty of the state but also encompasses the information about expectation values and uncertainties of any observable which depend on the observers choice for a particular measurement. Also a reverse uncertainty relation is derived for [Formula: see text] quantum mechanical observables.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2015 ◽  
Vol 30 (16) ◽  
pp. 1530039 ◽  
Author(s):  
O. Obregón

A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ2) distribution that depends on β and also on pl. The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We further demonstrate a generalized H-theorem. Considering the entropy as a function of the temperature and volume, it is possible to generalize the equation of state of an ideal gas. Moreover, following the entropic force formulation a generalized Newton's law is obtained, and following the proposal that the Einstein equations can be deduced from the Clausius law, we discuss on the structure that a generalized Einstein's theory would have. Lastly, we address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2d CFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV ones and also than those due to the area dependent AdS3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu–Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS3 area dependent entropy.


Sign in / Sign up

Export Citation Format

Share Document