Uniaxial Tensile Fatigue Testing of Sintered Silicon Carbide Under Cyclic Temperature Change

1986 ◽  
pp. 379-390
Author(s):  
H. Fujita ◽  
M. Kawai ◽  
H. Takahashi ◽  
H. Abe ◽  
J. Nakayama
2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Oliver J. Coultrup ◽  
Martin Browne ◽  
Christopher Hunt ◽  
Mark Taylor

Previous attempts by researchers to predict the fatigue behavior of bone cement have been capable of predicting the location of final failure in complex geometries but incapable of predicting cement fatigue life to the right order of magnitude of loading cycles. This has been attributed to a failure to model the internal defects present in bone cement and their associated stress singularities. In this study, dog-bone-shaped specimens of bone cement were micro-computed-tomography (μCT) scanned to generate computational finite element (FE) models before uniaxial tensile fatigue testing. Acoustic emission (AE) monitoring was used to locate damage events in real time during tensile fatigue tests and to facilitate a comparison with the damage predicted in FE simulations of the same tests. By tracking both acoustic emissions and predicted damage back to μCT scans, barium sulfate (BaSO4) agglomerates were found not to be significant in determining fatigue life (p=0.0604) of specimens. Both the experimental and numerical studies showed that diffuse damage occurred throughout the gauge length. A good linear correlation (R2=0.70, p=0.0252) was found between the experimental and the predicted tensile fatigue life. Although the FE models were not always able to predict the correct failure location, damage was predicted in simulations at areas identified as experiencing damage using AE monitoring.


2020 ◽  
Vol 23 (1) ◽  
pp. 41-48
Author(s):  
A. V. Zorichev ◽  
G. T. Pashchenko ◽  
O. A. Parfenovskaya ◽  
V. M. Samoylenko ◽  
T. I. Golovneva

Modern gas turbine engines operate under changing temperature loads. Therefore, one of the important characteristics of the protective coatings used on the turbine blades is their high resistance to the occurrence and development of cracks under mechanical and thermal loads. The applied effective systems of internal heat removal of the cooled turbine blades lead to an increase in their heat stress. At present, cracks arising from thermal fatigue are one of the common defects of the protective coatings used on turbine blades. The heat resistance of coatings at high temperatures is determined by three factors: the shape of the part on which the coating is applied, the thickness of the coating and the phase composition of the surface layers or the maximum aluminum content in the coating. Therefore, when choosing a protective coating for these operating conditions, it is important to know the impact of these factors on the thermal stability of the coating. The paper presents a comparative study of various coatings on their resistance to crack formation under cyclic temperature change. The dependence of the heat resistance of the considered coatings on the method of their application and phase-structural state is established. Especially valuable is the established mechanism of formation and propagation of thermal fatigue cracks depending on the phase composition of the initial coating. It is shown that the durability of protective coatings with cyclic temperature change depends on the chemical composition of the coating and the method of its formation. The dependence of the formation of thermal fatigue cracks on the samples with the coatings under study on the number of cycles of temperature change is established.


Sign in / Sign up

Export Citation Format

Share Document