Characterisation of Human Platelet Adrenoceptors

Author(s):  
D. B. Barnett ◽  
S. S. Swart ◽  
S. R. Nahorski ◽  
N. Cook
Keyword(s):  
1988 ◽  
Vol 59 (02) ◽  
pp. 236-239 ◽  
Author(s):  
Giovanna Barzaghi ◽  
Chiara Cerletti ◽  
Giovanni de Gaetano

SummaryWe studied the aggregating effect of different concentrations of phospholipase C (PLC) (extracted from Clostridium perfringens) on human platelet-rich plasma (PRP). PRP was preincubated with PLC for 3 min at 37° C and the platelet aggregation was followed for 10 min. The threshold aggregating concentration (TAG) of PLC was 3-4 U/ml.We also studied the potentiation of PLC with other stimuli on platelet aggregation. Potentiating stimuli, such as arachidonic acid (AA), ADP. Platelet Activating Factor (PAF) and U-46619 (a stable analogue of cyclic endoperoxides) were all used at subthreshold concentrations. We also studied the possible inhibitory effect of aspirin, apyrase, TMQ, a prostaglandin endoper- oxide/thromboxane receptor antagonist and BN-52021, a PAF receptor antagonist. Only aspirin and apyrase were able to reduce aggregation induced by PLC alone and PLC + AA and PLC + ADP respectively. TMQ and BN-52021 were inactive. In ex vivo experiments oral aspirin (500 mg) partially inhibited platelet aggregation induced by PLC alone, PLC + AA and PLC + ADP 2 and 24 h after administration. Aspirin 20 mg for 7 days also reduced aggregation induced by PLC + AA.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1994 ◽  
Vol 71 (05) ◽  
pp. 651-654 ◽  
Author(s):  
Rainer Kalb ◽  
Sentot Santoso ◽  
Katja Unkelbach ◽  
Volker Kiefel ◽  
Christian Mueller-Eckhardt

SummaryAlloimmunization against the human platelet alloantigen system Br (HPA-5) is the second most common cause of neonatal alloimmune thrombocytopenia (NAIT) in Caucasian populations. We have recently shown that a single base polymorphism at position 1648 on platelet mRNA coding for GPIa results in an aminoacid substitution at position 505 on the mature GPIa which is associated with the two serological defined Br phenotypes.Since DNA-typing of platelet alloantigens offers possibilities for useful clinical applications, we designed genomic DNA-based restriction fragment length polymorphism (RFLP) typing for Br alloantigens. To establish this technique we analyzed the genomic organization of GPIa adjacent to the polymorphic base. Using the polymerase chain reaction (PCR) of blood cell DNA we have identified two introns (approximately 1.7 and 1.9 kb) flanking a 144 bp coding sequence of the GPIa gene encompassing the polymorphic base 1648. Based on the in- tron sequence, a PCR primer was constructed to amplify a 274 bp fragment which was used for allele-specific RFLP to determine the Br genotypes. The results of RFLP analysis using Mnll endonuclease obtained from 15 donors (2 Br37*, 2 Br^ and 11 Brb/b) correlate perfectly with serological typing by monoclonal antibody-specific immobilization of platelet antigens (MAIPA) assay.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 457-464
Author(s):  
Paul C. French ◽  
Jan J. Sixma ◽  
Holm Holmsen

SummaryAdenine uptake into isolated platelet membranes had about the same Km (151 ± 21 • 9 nM) as uptake into intact cells (159 ± 21 nM) and was also competitively inhibited by papaverine and hypoxanthine. No uptake occurred at 0° and accumulated adenine was converted to AMP. AMP was not firmly bound to protein as judged by chromatography of triton X-100 solubilized membranes on Sephadex G25. The pH optimum for adenine uptake was at pH 5-5. Exogenous 5-phosphoribosyl-l-pyrophos- phate strongly stimulated uptake. These data may be explained by uptake of adenine by facilitated diffusion followed by conversion to AMP by adenine phosphoribosyltransferase but group translocation cannot be entirely excluded.


1988 ◽  
Vol 60 (01) ◽  
pp. 068-074 ◽  
Author(s):  
Piet W Modderman ◽  
Han G Huisman ◽  
Jan A van Mourik ◽  
Albert E G Kr von dem Borne

SummaryThe platelet glycoprotein (GP) IIb/IIIa complex functions as the receptor for fibrinogen on activated platelets. The effects of two anti-GPIIb/IIIa monoclonal antibodies on platelet function were studied. These antibodies, 6C9 and C17, recognized different epitopes, which were exclusively present on the undissociated GPIIb/IIIa complex. Whereas C17 inhibited the binding of fibrinogen to platelets and platelet aggregation induced by adenosine diphosphate (ADP) or collagen, 6C9 caused irreversible aggregation of platelets, both in the presence and absence of extracellular fibrinogen. When incubated with unstirred (nonaggregating) platelets, 6C9 induced release of alpha and dense granule-constituents as well as binding of 125I-fibrinogen to platelets. The latter was evidently mediated in part by platelet-derived ADP, since it was inhibited to a large extent by apyrase, the ADP-hydrolyzing enzyme. F(ab’)2 fragments of 6C9 did not induce platelet-release reactions but caused (slow) aggregation of platelets in the presence of extracellular fibrinogen.These results indicate that binding of an antibody to a specific site on the platelet GPIIb/IIIa complex may cause fibrinogen-mediated aggregation. The Fc part of the platelet-bound antibody appears to be involved in the induction of platelet release.


1993 ◽  
Vol 70 (05) ◽  
pp. 834-837 ◽  
Author(s):  
Akira Suehiro ◽  
Yoshio Oura ◽  
Motoo Ueda ◽  
Eizo Kakishita

SummaryWe investigated the effect of staphylokinase (SAK), which has specific thrombolytic properties, on human platelet aggregation. Platelet aggregation induced with collagen was observed following preincubation of platelets in platelet-rich plasma (PRP) or washed platelet suspension (WP) with SAK at 37° C for 30 min. SAK inhibited platelet aggregation in PRP only at the highest examined concentration (1 x 10-4 g/ml). Although SAK did not inhibit platelet aggregation in WP which contained fibrinogen, it did when the platelets had been preincubated with SAK and plasminogen. The most effective concentration in WP was 1 x 10-6 g/ml. The effect could be inhibited by adding aprotinin or α2-antiplasmin. The highest generation of plasmin in the same preincubation fluid was detected at 1 x 10-6 g/ml SAK. We concluded that SAK can inhibit platelet aggregation in WP by generating plasmin and/or fibrinogen degradation products, but is only partially effective in PRP because of the existence of α2-antiplasmin.


1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


1993 ◽  
Vol 69 (05) ◽  
pp. 485-489 ◽  
Author(s):  
Isabelle Djaffar ◽  
Didier Vilette ◽  
Dominique Pidard ◽  
Jean-Luc Wautier ◽  
Jean-Philippe Rosa

SummaryThe human platelet antigen (HPA) 3 system is expressed on GPIIb, one subunit of GPIIb-IIIa, the platelet fibrinogen receptor. It was recently shown that HPA-3 was associated with an Ile843/Ser polymorphism. To investigate further HPA-3 determinant structure, we localized an HPA-3a determinant, recognized by the alloantiserum Leka, within the last 29 amino acids of GPIIbα. This region encompasses the polymorphic Ile843, which, as expected, is substituted into Ser in Leka-negative individuals, as shown by DNA sequence after polymerase chain reaction on platelet RNA. In addition, contribution of glycosylation to the determinant structure was demonstrated since the Leka antigenicity was strongly decreased after specifically removing nonterminal O-linked sugars, but not terminal sialic acids. We have thus refined the localization of an HPA-3a determinant within the last 29 amino acids, including Ile843, of GPIIb heavy chain, and shown that the Leka HPA-3a determinant is dependent, in part, upon the serine-linked carbohydrates adjacent to Ile/Ser843.


Sign in / Sign up

Export Citation Format

Share Document