Preliminary Design Studies of Low Temperature Refrigeration Plants

Author(s):  
D. Aronson
Author(s):  
James K. La Fleur

In May of 1960 La Fleur Enterprises, later to become The La Fleur Corporation, undertook the design of a closed-cycle gas turbine utilizing helium as a working fluid. The useful output of this machine was to be in the form of a stream of helium bled from the last stage of the compressor. This stream was to be used in a low-temperature refrigeration cycle (not described in this paper) and would be returned to the compressor inlet at approximately ambient temperature and at compressor-inlet pressure. The design of this machine was completed by the end of 1960 and construction was initiated immediately. The unit was completed and initial tests were made in the Spring of 1962. This paper covers the design philosophy as it affected the conceptual and preliminary design phases of the project and describes briefly the design of the various components. Photographs of these components and a flow schematic are included.


1961 ◽  
Vol 65 (612) ◽  
pp. 830-832 ◽  
Author(s):  
Paul D. Arthur ◽  
Edward T. Pitkin

Downward deflection of a propulsive jet may be employed to augment aerodynamic lift in an advantageous manner. In each situation there occurs a simple optimisation when the losses due to reduced propulsive efficiency are contrasted with the gains which accrue from jet lifting. Typical cases will be considered here for wing dominant configurations, i.e. cases where the lifting surfaces contribute most of the drag, with the body contributing but a minor effect. Variable geometry of both airframe and engine is implicitly assumed so that results may be applied to preliminary design studies which will determine the relative propulsion system size and wing area.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
R. P. Nordgren ◽  
C. G. Langner

Abstract We analyze a suspended pipe with the application to offshore pipelaying and suspended production risers. Basic equations from the planar theory of elastic rods are reduced to a second-order ordinary differential equation with special end conditions that is solved numerically. Dimensionless results are given for the maximum curvature in the sag portion of the pipe and the slope angle at the upper end of the pipe in the absence of hydrodynamic forces. Both a rigid and a compliant seafloor are treated. We find that tension is highly effective in limiting curvature. A equation is found for the applied tension at the upper end of the pipe. Our results are intended for preliminary design studies that can be followed by more sophisticated analyses.


Sign in / Sign up

Export Citation Format

Share Document