O 2 − and H2O2 Production During the Respiratory Burst in Alveolar Macrophages

Author(s):  
F. Rossi ◽  
G. Zabucchi ◽  
P. Dri ◽  
P. Bellavite ◽  
G. Berton
2006 ◽  
Vol 127 (6) ◽  
pp. 659-672 ◽  
Author(s):  
Jon K. Femling ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Balázs Rada ◽  
A. Paige Davis ◽  
...  

Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K+ (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853–858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA2 or the production of superoxide anion (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2^{.}}^{{-}}\) \end{document}). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn2+ inhibition of NADPH oxidase activity assessed by H2O2 production, thus validating previous studies showing that Zn2+ inhibited \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2^{.}}^{{-}}\) \end{document} production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and BK inhibitors did not impair antimicrobial activity. In contrast, we present additional evidence that voltage-gated proton channels serve the essential role of charge compensation during the respiratory burst.


Author(s):  
Silvana Marina Piccoli Pugine ◽  
Michelle Fernandes de Faria ◽  
Antônio Augusto Mendes Maia ◽  
Claudia Ribeiro do Valle ◽  
Camila Boschini ◽  
...  

Neutrophils, eosinophils and macrophages are cells that interact with invading parasites and naive hosts have been shown to have anti-parasitic activity. The initial reaction of these leukocytes is the generation of reactive oxygen species (ROS) to play in parasite expulsion. The present work was carried out to study the effect of total extract, scolex and membrane fractions from Cysticercus cellulosae on respiratory burst by pig neutrophils. Hydrogen peroxide (H2O2) production by neutrophils incubated with metacestode fractions from C. cellulosae showed an increase of: 190% (total extract), 120% (scolex) and 44% (membrane). High antioxidant catalatic activity (33%, 28%, 28% by total extract, scolex and membrane, respectively) was observed in neutrophils incubated with metacestode fractions, which could be an attempt at self-protection. Scolex and membrane fractions increased the phagocytic capacity of neutrophils (44% and 28%, respectively). On the other hand, total cysticerci did not alter the phagocytosis, possibly due to modifications in membrane function, caused by high ROS production from neutrophils in the presence of total cysticerci. Total fraction from C. cellulosae is toxic for neutrophils as shown by the decrease in phagocytic capacity, probably caused by high levels of ROS formation. The difference in toxicity of total extract, scolex and membrane fractions on neutrophils can be explained by the presence of an antigenic effect of the vesicular fluid in the total extract of C. cellulosae.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2558-2564 ◽  
Author(s):  
Dieter Fröhlich ◽  
Olivier Spertini ◽  
René Moser

Abstract Intracellular H2O2 generation, as a measure of the respiratory burst, was determined after stimulation of neutrophils by immune complex (IC)-bearing human umbilical vein endothelial cells. Under static conditions, neutrophils basically responded to the immune deposits on resting endothelial cells. The rotating shear forces of ≈0.7 dynes/cm2, corresponding to the physiological flow in postcapillary venules, completely abolished this basal H2O2 generation. After activation of the IC-bearing endothelial layers with interleukin-1 (IL-1) or tumor necrosis factor (TNF), or both, for 4 hours, rolling adhesion of the neutrophils was induced, accompanied by considerable H2O2 production. The neutrophil respiratory burst was prominently inhibited by anti-FcγRIII MoAb 3G8 (72.4%), and partially by MoAb 2E1 against FcγRII (38.5%). Both MoAbs together inhibited the Fc-mediated H2O2generation by 93.4%. The respiratory burst and rolling adhesion were markedly blocked by MoAb LAM1-3 against L-selectin (91.3%), whereas the nonfunctional anti-L-selectin MoAb LAM1-14 was ineffective. F(ab)2′ fragments of MoAb 7A9 against E-selectin inhibited neutrophil rolling by 98.6%, but not the respiratory burst. Moreover, rolling adhesion of neutrophils and the related oxidative burst were CD11b/CD18- independent. In summary, L-selectin has a unique auxiliary function in triggering the FcγR-mediated respiratory burst of rolling neutrophils to IC-bearing endothelial cells, thereby substituting CD11b/CD18 under conditions of flow.


1990 ◽  
Vol 68 (6) ◽  
pp. 2384-2390 ◽  
Author(s):  
V. Mohsenin ◽  
J. Latifpour

Bactericidal ability of alveolar macrophages is depressed in rats with diabetes mellitus. To define the mechanism of this abnormality, we measured the parameters of respiratory burst in alveolar macrophages, peripheral blood monocytes, and neutrophils of rats 8 wk after the induction of diabetes by streptozocin. Superoxide anion (O2-.) generation during basal conditions and after stimulation with phorbol myristate acetate (PMA) was measured as superoxide dismutase-inhibitable cytochrome c reduction. NADPH, the principal substrate for NADPH-oxidase-dependent O2-. generation, was measured in the alveolar macrophages and quick-frozen lungs by the enzyme-cycling method. O2-. generation after PMA was significantly lower in the alveolar macrophages of diabetics than in the controls (14.4 +/- 2.0 nmol.10(6) cells-1.20 min-1 vs. 26.2 +/- 1.9, P less than 0.05). Conversely the peripheral blood monocytes of diabetics demonstrated an enhanced O2-. production after PMA stimulation. There was no significant difference in the neutrophil O2-.-generation between the groups. The alveolar macrophage NADPH (control 0.44 +/- 0.15 nmol/10(6) cells vs. diabetic 0.21 +/- 0.04, P less than 0.05) and lung tissue NADPH levels (control 81.4 +/- 16.3 nmol/g dry wt vs. diabetic 35.8 +/- 20.5, P less than 0.05) were significantly lower in the diabetics than in the controls. These data indicate that the O2-.-generating capacity of alveolar macrophages is markedly depressed in diabetes, whereas their precursors, monocytes, are primed to generate O2-. with PMA stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 310 (3) ◽  
pp. 795-806 ◽  
Author(s):  
R S Perkins ◽  
M A Lindsay ◽  
P J Barnes ◽  
M A Giembycz

The early signalling events that may ultimately contribute to the assembly and subsequent activation of the NADPH oxidase in guinea-pig peritoneal eosinophils were investigated in response to leukotriene B4 (LTB4). LTB4 promoted a rapid, transient and receptor-mediated increase in the rate of H2O2 generation that was potentiated by R 59 022, a diradylglycerol (DRG) kinase inhibitor, implicating protein kinase C (PKC) in the genesis of this response. This conclusion was supported by the finding that the PKC inhibitor, Ro 31-8220, attenuated (by about 30%) the peak rate of LTB4-induced H2O2 generation under conditions where the same response evoked by 4 beta-phorbol 12,13-dibutyrate (PDBu) was inhibited by more than 90%. Paradoxically, Ro 31-8220 doubled the amount of H2O2 produced by LTB4 which may relate to the ability of PKC to inhibit cell signalling through phospholipase C (PLC). Indeed, Ro 31-8220 significantly enhanced LTB4-induced Ins(1,4,5)P3 accumulation and the duration of the Ca2+ transient in eosinophils. Experiments designed to assess the relative importance of DRG-mobilizing phospholipases in LTB4-induced oxidase activation indicated that phospholipase D (PLD) did not play a major role. Thus, although H2O2 generation was abolished by butan-1-ol, this was apparently unrelated to the inhibition of PLD, as LTB4 failed to stimulate the formation of Ptd[3H]BuOH in [3H]butan-1-ol-treated eosinophils. Rather, the inhibition was probably due to the ability of butan-1-ol to increase the eosinophil cyclic AMP content. In contrast, Ca(2+)- and PLC-driven mechanisms were implicated in H2O2 generation, as LTB4 elevated the Ins(1,4,5)P3 content and intracellular free Ca2+ concentration in intact cells, and cochelation of extracellular and intracellular Ca2+ significantly attenuated LTB4-induced H2O2 generation. Pretreatment of eosinophils with wortmannin did not affect LTB4-induced H2O2 production at concentrations at which it abolished the respiratory burst evoked by formylmethionyl-leucylphenylalanine in human neutrophils. Collectively, these data suggest that LTB4 activates the NADPH oxidase in eosinophils by PLD- and PtdIns 3-kinase-independent mechanisms that involve Ca2+, PLC and PKC. Furthermore, the activation of additional pathways that do not require Ca2+ is also suggested by the finding that LTB4 evoked a significant respiratory burst in Ca(2+)-depleted cells.


Sign in / Sign up

Export Citation Format

Share Document