In Vivo and in Vitro Effects of Vitamin D3 [1,25-(OH)2D3] on the Uptake of Phosphate by Isolated Chick Kidney Cells

Author(s):  
Bertram Sacktor ◽  
Linda Cheng ◽  
C. Tony Liang
Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3602
Author(s):  
Elena Genova ◽  
Maura Apollonio ◽  
Giuliana Decorti ◽  
Alessandra Tesser ◽  
Alberto Tommasini ◽  
...  

Interferonopathies are rare genetic conditions defined by systemic inflammatory episodes caused by innate immune system activation in the absence of pathogens. Currently, no targeted drugs are authorized for clinical use in these diseases. In this work, we studied the contribution of sulforaphane (SFN), a cruciferous-derived bioactive molecule, in the modulation of interferon-driven inflammation in an immortalized human hepatocytes (IHH) line and in two healthy volunteers, focusing on STING, a key-component player in interferon pathway, interferon signature modulation, and GSTM1 expression and genotype, which contributes to SFN metabolism and excretion. In vitro, SFN exposure reduced STING expression as well as interferon signature in the presence of the pro-inflammatory stimulus cGAMP (cGAMP 3 h vs. SFN+cGAMP 3 h p value < 0.0001; cGAMP 6 h vs. SFN+cGAMP 6 h p < 0.001, one way ANOVA), restoring STING expression to the level of unstimulated cells. In preliminary experiments on healthy volunteers, no appreciable variations in interferon signature were identified after SFN assumption, while only in one of them, presenting the GSTM1 wild type genotype related to reduced SFN excretion, could a downregulation of STING be recorded. This study confirmed that SFN inhibits STING-mediated inflammation and interferon-stimulated genes expression in vitro. However, only a trend towards the downregulation of STING could be reproduced in vivo. Results obtained have to be confirmed in a larger group of healthy individuals and in patients with type I interferonopathies to define if the assumption of SFN could be useful as supportive therapy.


1985 ◽  
Vol 40 (4) ◽  
pp. 297-302 ◽  
Author(s):  
David R. Mann ◽  
Diane Evans ◽  
Festus Edoimioya ◽  
Freja Kamel ◽  
George M. Butterstein

2019 ◽  
Vol 317 (1) ◽  
pp. F30-F42
Author(s):  
Te-Jung Lu ◽  
Wei-Chih Kan ◽  
Sung-Sen Yang ◽  
Si-Tse Jiang ◽  
Sheng-Nan Wu ◽  
...  

Liddle syndrome is an inherited form of human hypertension caused by increasing epithelial Na+ channel (ENaC) expression. Increased Na+ retention through ENaC with subsequent volume expansion causes hypertension. In addition to ENaC, the Na+-K+-Cl− cotransporter (NKCC) and Na+-Cl− symporter (NCC) are responsible for Na+ reabsorption in the kidneys. Several Na+ transporters are evolutionarily regulated by the Ste20 kinase family. Ste20-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 phosphorylate downstream NKCC2 and NCC to maintain Na+ and blood pressure (BP) homeostasis. Mammalian Ste20 kinase 3 (MST3) is another member of the Ste20 family. We previously reported that reduced MST3 levels were found in the kidneys in spontaneously hypertensive rats and that MST3 was involved in Na+ regulation. To determine whether MST3 is involved in BP stability through Na+ regulation, we generated a MST3 hypomorphic mutation and designated MST3+/− and MST3−/− mice to examine BP and serum Na+ and K+ concentrations. MST3−/− mice exhibited hypernatremia, hypokalemia, and hypertension. The increased ENaC in the kidney played roles in hypernatremia. The reabsorption of more Na+ promoted more K+ secretion in the kidney and caused hypokalemia. The hypernatremia and hypokalemia in MST3−/− mice were significantly reversed by the ENaC inhibitor amiloride, indicating that MST3−/− mice reabsorbed more Na+ through ENaC. Furthermore, Madin-Darby canine kidney cells stably expressing kinase-dead MST3 displayed elevated ENaC currents. Both the in vivo and in vitro results indicated that MST3 maintained Na+ homeostasis through ENaC regulation. We are the first to report that MST3 maintains BP stability through ENaC regulation.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 146-158 ◽  
Author(s):  
KS Zuckerman ◽  
PJ Quesenberry ◽  
J Levin ◽  
R Sullivan

Abstract Endotoxin was detected in all erythropoietin preparations tested and was removed from four lots, without loss of erythropoietic activity, by adsorption with limulus amebocyte lysate. Comparison of adsorbed (endotoxin-depleted) and nonadsorbed (endotoxin-containing) erythropoietin preparations demonstrated significant inhibition of CFU- e and BFU-e in vitro by nonadsorbed erythropoietin at concentrations higher than 0.25 U/ml and 2.0 U/ml, respectively. CFU-e and BFU-e were inhibited significantly by readdition in vitro of 10(-5)-10(-3) mug of endotoxin per unit of limulus-adsorbed erythropoietin. Administration of saline or 6 U of nonadsorbed or adsorbed erythropoietin twice a day for 4 days of CF1 mice resulted in reticulocyte counts of 2.1%, 9.9%, and 15.9%, respectively. Nonadsorbed erythropoietin resulted in a 29% decrease in erythropoiesis, a 42% decrease in CFU-e, and a 16% increase in granulopoiesis in the marrow, whereas adsorbed erythropoietin caused a 28% increase in erythropoiesis, no significant change in CFU-e and a 19% decrease in granulopoiesis in the marrow. Both preparations resulted in marked increases in splenic erythropoiesis and granulopoiesis. The effects of adsorbed erythropoietin are similar to those produced following stimulation of hematopoiesis by endogenous erythropoietin. Hemopoietic changes induced by nonadsorbed erythropoietin in vivo and in vitro are affected substantially by contamination of the erythropoietin preparations with endotoxin.


1981 ◽  
Vol 7 (6) ◽  
pp. 385-392 ◽  
Author(s):  
M. Batardy-Gregoire ◽  
C. Razzouk ◽  
E. Agazzi-Leonard ◽  
M. Mercier ◽  
F. Poncelet ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document