Phospholipases: Link Between Membrane Phospholipids and Arachidonate Metabolites

1983 ◽  
pp. 1-14 ◽  
Author(s):  
H. van den Bosch
Author(s):  
James F. Hainfeld

Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W11) attached to lipid moieties to form lipid structures and lipid probes.


1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


1990 ◽  
Vol 265 (11) ◽  
pp. 5956-5959
Author(s):  
A Muga ◽  
J L Arrondo ◽  
J I Gurtubay ◽  
F M Goñi

1991 ◽  
Vol 131 (1) ◽  
pp. 87-94 ◽  
Author(s):  
A. W. Nangalama ◽  
G. P. Moberg

ABSTRACT In several species, glucocorticoids act directly on the pituitary gonadotroph to suppress the gonadotrophin-releasing hormone (GnRH)-induced secretion of the gonadotrophins, especially LH. A mechanism for this action of these adrenal steroids has not been established, but it appears that the glucocorticoids influence LH release by acting on one or more post-receptor sites. This study investigated whether glucocorticoids disrupt GnRH-induced LH release by altering the liberation of arachidonic acid from plasma membrane phospholipids, a component of GnRH-induced LH release. Using perifused ovine pituitary tissue, it was established that exposure of gonadotrophs to 1–1000 nmol cortisol/l for 4 h or longer significantly reduced GnRH-stimulated LH release with the maximal inhibitory effect being observed after 6 h of exposure to cortisol. This suppressive effect of cortisol could be reversed by administration of arachidonic acid, which in its own right could stimulate LH release from ovine pituitary tissue. Furthermore, the inhibitory effect of cortisol on GnRH-stimulated LH release could be directly correlated with decreased pituitary responsiveness to GnRH-stimulated arachidonic acid liberation, consistent with our hypothesis that glucocorticoids can suppress GnRH-induced secretion of LH by reducing the amount of arachidonic acid available for the exocytotic response of GnRH. Journal of Endocrinology (1991) 131, 87–94


Sign in / Sign up

Export Citation Format

Share Document