Monoclonal Antibodies to Cytoskeletal Proteins

Author(s):  
J. J. C. Lin ◽  
J. R. Feramisco ◽  
S. H. Blose ◽  
F. Matsumura
Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


1989 ◽  
Vol 37 (5) ◽  
pp. 675-681 ◽  
Author(s):  
B M Riederer

The effects of aldehyde fixatives on immunochemical detection of cytoskeletal proteins were demonstrated by applying several quantitative assays to evaluate antigen conservation. Immunologically detectable brain spectrin (240/235) was measured by dot-immunobinding and quantitative immunodot assay using a polyclonal antibody. Paraformaldehyde fixation led to a 43-66% reduction in brain spectrin (240/235) immunodetection, and increasing glutaraldehyde concentrations decreased the immunological detection even more. Quantitative cryosection immunoassay and immunocytochemical localization confirmed the aldehyde sensitivity of brain spectrin (240/235). Brain spectrin (240/235) immunoreactivity decreased with increasing protein crosslinking and was dependent on glutaraldehyde concentration and post-fixation period. The assays were also used to test for conservation of antigenicity of neurofilament proteins by two monoclonal antibodies. Neurofilament detection was abolished in brain tissue after aldehyde fixation. The described methods allow screening within 24 hr of many fixation conditions by use of purified proteins as well as brain tissue samples, and allow an estimate of fixative influence on the conservation of protein antigenicity.


1993 ◽  
Vol 170 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Rebecca M. Porter ◽  
Thomas C. Holme ◽  
E. Luke Newman ◽  
David Hopwood ◽  
J. Michael Wilkinson ◽  
...  

1988 ◽  
Vol 89 (3) ◽  
pp. 309-319
Author(s):  
C.E. Turner ◽  
M.R. Newton ◽  
D.M. Shotton

The independent capping of the three major rat thymocyte glycoproteins, the leucocyte-common (L-C) antigen, the leucocyte sialoglycoprotein (LSGP) and Thy-1, was investigated using specific monoclonal antibodies. The capping of each antigen did not require redistribution of the other major surface glycoproteins, and was accompanied by a partial co-capping of the cytoskeletal proteins fodrin and actin, but not of tubulin. A study of the ability of a cell that already possesses one glycoprotein cap to cap a second different glycoprotein showed that this was possible in all cases to varying degrees, the second cap always forming at the same position on the cell surface as the first. Colchicine failed to perturb this observed sequential capping polarity, indicating that microtubules did not direct this second capping event.


1987 ◽  
Vol 104 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
X J Chang ◽  
G Piperno

Monoclonal antibodies specific for each of the flagellar tektins were prepared and used to determine whether structures similar to tektin filaments are present in cells lacking cilia or flagella. This analysis was performed by double-label immunofluorescence microscopy of several cell lines and by immunoblots of protein fractions. Two of the four anti-tektin antibodies, the antibodies 3-7-1 and 3-10-1, which bind different epitopes of the C-tektin, label 3T3, HeLa, PtK2, and BHK-21 cells as well as myotubes. The antibody 3-7-1 stains intermediate filament structures in the cells and binds vimentin or desmin in preparations of cytoskeletal proteins; whereas the antibody 3-10-1 stains nuclear envelopes in the cells and binds lamin A and C in preparations of cytoskeletal proteins or nuclear lamina. Structural similarities between the C-tektin and intermediate filament proteins probably are extended to more than two epitopes because polyclonal antibodies anti-vimentin and anti-desmin bind to C-tektin. These polyclonal antibodies also bind to A-tektin. The cross-reaction of monoclonal and polyclonal antibodies binding to epitopes in tektin and intermediate filament components and the existence of a high content of alpha-helical structure in the tektin subunits (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22) indicate that tektin and intermediate filaments are homologous in several parts of their structure.


1987 ◽  
Vol 105 (5) ◽  
pp. 2111-2121 ◽  
Author(s):  
L Zokas ◽  
J R Glenney

Calpactins are a family of related Ca++-regulated cytoskeletal proteins. To analyze the expression and cytoskeletal association of calpactins we raised monoclonal antibodies with specificity for the heavy or light chains of calpactin I or to calpactin II. Comparison of the tissue distribution of calpactin I heavy and light chains by Western blots revealed that these subunits are coordinately expressed. Both soluble and cytoskeletal forms of the heavy chain of calpactin I were detected in human fibroblasts whereas only a soluble pool of calpactin II was found. These two forms of the calpactin I heavy chain differed both in their state of association with the light chain and in their rate of turnover. Both the soluble pool of the calpactin I heavy chain and calpactin II turned over three to four times faster than the cytoskeletal pool of heavy and light chains. Immunofluorescence microscopy revealed that the calpactin I light chain was present exclusively in the cytoskeleton whereas the calpactin I heavy chain distribution was more diffuse. No difference in the amount of light chain or the cytoskeletal attachment of phosphorylated calpactin I heavy chain was found in Rous sarcoma virus-transformed chick embryo fibroblasts compared with their normal counterpart. The antibody to the light chain of calpactin I was microinjected into cultured fibroblasts and kidney epithelial cells. In many cases antibody clustering was observed with the concomitant aggregation of the associated calpactin I heavy chain. The distribution of fodrin and calpactin II in injected cells remained unchanged. These results are consistent with the existence of two functionally distinct pools of calpactin I which differ in their association with the cytoskeleton.


1998 ◽  
Vol 111 (22) ◽  
pp. 3367-3378 ◽  
Author(s):  
I. Huttenlauch ◽  
R.K. Peck ◽  
R. Stick

The cortex of ciliates, dinoflagellates and euglenoids comprises a unique structure called the epiplasm, implicated in pattern-forming processes of the cell cortex and in maintaining cell shape. Despite significant variation in the structural organization of their epiplasm and cortex, a novel type of cytoskeletal protein named articulin is the principal constituent of the epiplasm in the euglenoid Euglena and the ciliate Pseudomicrothorax. For another ciliate, Paramecium, epiplasmins, a group of polypeptides with common biochemical properties, are the major constituents of the epiplasm. Using molecular tools and affinity purification we have selected polyclonal antibodies and identified epitopes of monoclonal antibodies that identify epitopes characteristic of articulins and epiplasmins. With these antibodies we have analysed the occurrence of the two types of cytoskeletal proteins in a dinoflagellate, a euglenoid and several ciliates. Our results indicate that both articulins and epiplasmins are present in these organisms, suggesting that both contribute to the organization of the membrane skeleton in protists. Articulins and epiplasmins represent two distinct classes of cytoskeletal proteins, since different polypeptides were labeled by articulin core domain-specific or epiplasmin epitope-specific antibodies in each organism studied. In one case, a polypeptide in Pseudomicrothorax was identified that reacts with both articulin core domain-specific and with anti-epiplasmin monoclonal antibodies; however, the epiplasmin monoclonal antibody epitope was mapped to the C terminus of the polypeptide, well outside the central VPV-repeat core domain that contains the articulin monoclonal antibody epitope and that is the hallmark of the articulins.


Sign in / Sign up

Export Citation Format

Share Document