Erythrocyte Adenine PRPP Availability in Two Types of APRT Deficiency Using Silicon Oil Method

Author(s):  
Fujio Takeuchi ◽  
Naoyuki Kamatani ◽  
Yutaro Nishida ◽  
Terumasa Miyamoto
Keyword(s):  
1988 ◽  
Vol 24 (1) ◽  
pp. 136-136
Author(s):  
Tujlo Takeuchi ◽  
Haoyuki Kamatani ◽  
Yutaro Nishida ◽  
Terumasa Miyamoto
Keyword(s):  

2021 ◽  
pp. 004051752110069
Author(s):  
Gannian Zhang ◽  
Qinfa Zhang

Resistance of military clothing to oil permeation is important for effective protection against chemical warfare. In this paper, while a military textile is rendered oleophobic (oil contact angle ≈ 120°) through plasma-assisted deposition of perfluorodecyl acrylate (PFAC8), permeation of the textile by silicon oil is observed. Using high-definition digital imaging, we study the oil permeation dynamics, rationalize the permeation with a plausible mechanism and identify the threshold textile pore size for prevention of the permeation. We find that oil permeates defects of PFAC8 textiles. Our data suggests a linear variation for oil permeation volume ΔV with time t and implies a gravity-driving permeation mechanism. The mechanism comprises three stages involving merging and propagation of oil–yarn contact lines. The threshold pore size dm scales with σ/ P, where σ is the oil surface tension and P is the hydrostatic head exerted by the oil drop. The paper indicates the importance of an undamaged textile structure to ‘robust’ oil resistance.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


Author(s):  
Hrafnhildur L. Runolfsdottir ◽  
John A. Sayer ◽  
Olafur S. Indridason ◽  
Vidar O. Edvardsson ◽  
Brynjar O. Jensson ◽  
...  

AbstractAdenine phosphoribosyltransferase deficiency is a rare, autosomal recessive disorder of purine metabolism that causes nephrolithiasis and progressive chronic kidney disease. The small number of reported cases indicates an extremely low prevalence, although it has been suggested that missed diagnoses may play a role. We assessed the prevalence of APRT deficiency based on the frequency of causally-related APRT sequence variants in a diverse set of large genomic databases. A thorough search was carried out for all APRT variants that have been confirmed as pathogenic under recessive mode of inheritance, and the frequency of the identified variants examined in six population genomic databases: the deCODE genetics database, the UK Biobank, the 100,000 Genomes Project, the Genome Aggregation Database, the Human Genetic Variation Database and the Korean Variant Archive. The estimated frequency of homozygous genotypes was calculated using the Hardy-Weinberg equation. Sixty-two pathogenic APRT variants were identified, including six novel variants. Most common were the missense variants c.407T>C (p.(Met136Thr)) in Japan and c.194A>T (p.(Asp65Val)) in Iceland, as well as the splice-site variant c.400 + 2dup (p.(Ala108Glufs*3)) in the European population. Twenty-nine variants were detected in at least one of the six genomic databases. The highest cumulative minor allele frequency (cMAF) of pathogenic variants outside of Japan and Iceland was observed in the Irish population (0.2%), though no APRT deficiency cases have been reported in Ireland. The large number of cases in Japan and Iceland is consistent with a founder effect in these populations. There is no evidence for widespread underdiagnosis based on the current analysis.


Author(s):  
Conor E. McCarthy ◽  
Tara Dalton ◽  
Mark Davies

There is currently considerable interest in the development of microfluidic based lab-on-chip devices for sample preparation in next generation sequencing. One of these steps is DNA enrichment which often relies on conventional PCR to amplify the sample to detectable levels. To successfully automate this step, technologies are required whereby the samples are selectively inputted, thermocycled and selectively dispensed, all non invasively and therefore leading to no contamination issues. In this study such a system was created through the use of liquid-liquid plugs flowing in a gravity driven siphon. Plug generation was achieved through an innovative approach whereby a hydrophobic tube was traversed between two immiscible fluids (silicon oil and PCR reagents) and successful amplification was shown for Beta-2-Microfloblin (B2M).


Author(s):  
Bekir Sami Yilbas ◽  
Anwaruddin Siddiqui Mohammed ◽  
Abba Abdulhamid Abubakar ◽  
Saeed Bahatab ◽  
Hussain Al-Qahtani ◽  
...  

Abstract A sliding droplet over the silicon oil film is examined and the dynamics of droplet motion are explored. The solution crystallized wafer surfaces are silicon oil impregnated and the uniform thickness oil film is realized. A recording facility operating at high-speed and the tracker program are used to monitor and evaluate the droplet dynamics during droplet sliding. The sliding behavior and flow generated in the droplet fluid are predicted by adopting the experimental terms. Findings revealed that the crystallized surface possesses the texture composing of spherules and fibrils, which give rise to 132o ± 4o contact angle and 38o ± 4o hysteresis. Oil impregnation on the crystalized surface improves the optical transmittance by three times for 250 nm to 500 nm wavelength range and almost 1.5 times after 500 nm to 850 nm wavelengths of the optical spectrum. The oil rim and ridges are developed in sliding water droplet vicinity while influencing droplet motion; however, this influence is estimated as almost 12% of droplet gravitational energy change during sliding. A circulatory flow is developed inside the droplet fluid and the maximum velocity in the droplet fluid changes as the droplet location changes on the oil surface during its sliding.


2018 ◽  
Vol 34 (3) ◽  
pp. 435-442 ◽  
Author(s):  
Hrafnhildur Linnet Runolfsdottir ◽  
Runolfur Palsson ◽  
Inger MSch Agustsdottir ◽  
Olafur S Indridason ◽  
Vidar O Edvardsson

2019 ◽  
Vol 171 ◽  
pp. 190-198 ◽  
Author(s):  
Haoyi Wu ◽  
Zheng-Ming Wang ◽  
Akio Kumagai ◽  
Takashi Endo

2016 ◽  
Vol 9 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqiang Jing ◽  
Jiatong Tan ◽  
Haili Hu ◽  
Jie Sun ◽  
Peiyu Jing

Transparent model oils are commonly used to study the flow patterns and pressure gradient of crude oil-water flow in gathering pipes. However, there are many differences between the model oil and crude oils. The existing literatures focus on the flow pattern transition and pressure gradient calculation of model oils. This paper compares two most commonly used model oils (white mineral oil and silicon oil) with Xinjiang crude oil from the perspectives of rheological properties, oil-water interfacial tensions, emulsion photomicrographs and demulsification process. It indicates that both the white mineral oil and the crude oils are pseudo plastic fluids, while silicon oil is Newtonian fluid. The viscosity-temperature relationship of white mineral oil is similar to that of the diluted crude oil, while the silicon oil presents a less viscosity gradient with the increasing temperature. The oil-water interfacial tension can be used to evaluate the oil dispersing ability in the water phase, but not to evaluate the emulsion stability. According to the Turbiscan lab and the stability test, the model oil emulsion is less stable than that of crude oil, and easier to present water separation.


Sign in / Sign up

Export Citation Format

Share Document