scholarly journals Which Topological Features of a Gauge Theory can be Responsible for Permanent Confinement?

Author(s):  
G.’t Hooft
1990 ◽  
Vol 05 (23) ◽  
pp. 1833-1839 ◽  
Author(s):  
WEI CHEN ◽  
G. W. SEMENOFF ◽  
YONG-SHI WU

The topological Chern-Simons gauge theory is studied in the framework of perturbation theory. Both dimensional and F2 regularizations are used. We demonstrate the vanishing of the beta function up to three loops, the absence of diffeomorphism anomaly in the calculation of two- and three-point functions, and the validity of a topological Ward identity by finite renormalization of the coupling constant. The regularization dependence of the finite renormalization and an ambiguity in the dimensional regularization are also discussed.


1999 ◽  
Vol 14 (28) ◽  
pp. 1937-1949 ◽  
Author(s):  
R. P. MALIK

We discuss the BRST cohomology and exhibit a connection between the Hodge decomposition theorem and the topological properties of a two-dimensional free non-Abelian gauge theory (having no interaction with matter fields). The topological nature of this theory is encoded in the vanishing of the Laplacian operator when equations of motion are exploited. We obtain two sets of topological invariants with respect to BRST and co-BRST charges on the two-dimensional compact manifold and show that the Lagrangian density of the theory can be expressed as the sum of terms that are BRST and co-BRST invariants. Thus, this theory captures together some of the salient features of both Witten and Schwarz type of topological field theories.


Author(s):  
D.W. Andrews ◽  
F.P. Ottensmeyer

Shadowing with heavy metals has been used for many years to enhance the topological features of biological macromolecular complexes. The three dimensional features present in directionaly shadowed specimens often simplifies interpretation of projection images provided by other techniques. One difficulty with the method is the relatively large amount of metal used to achieve sufficient contrast in bright field images. Thick shadow films are undesirable because they decrease resolution due to an increased tendency for microcrystalline aggregates to form, because decoration artefacts become more severe and increased cap thickness makes estimation of dimensions more uncertain.The large increase in contrast provided by the dark field mode of imaging allows the use of shadow replicas with a much lower average mass thickness. To form the images in Fig. 1, latex spheres of 0.087 μ average diameter were unidirectionally shadowed with platinum carbon (Pt-C) and a thin film of carbon was indirectly evaporated on the specimen as a support.


1981 ◽  
Vol 1 (2) ◽  
pp. 257-259
Author(s):  
Hanying Guo

2018 ◽  
Vol 77 (4) ◽  
pp. 222-229 ◽  
Author(s):  
A. V. Paranin ◽  
A. B. Batrashov

The article compares the results of calculation of the finite element simulation of current and temperature distribution in the scale model of the DC catenary with the data of laboratory tests. Researches were carried on various versions of the structural design of catenary model, reflecting the topological features of the wire connection, characteristic of the DC contact network. The proportions of the cross-sectional area of the scaled model wires are comparable to each other with the corresponding values for real DC catenary. The article deals with the operating conditions of the catenary model in the modes of transit and current collection. When studying the operation of the scale catenary model in the transit mode, the effect of the structural elements on the current distribution and heating of the wires was obtained. Within the framework of the scale model, theoretical assumptions about the current overload of the supporting cable near the middle anchoring have been confirmed. In the current collection mode, the experimental dependences of the current in the transverse wires of the scale model are obtained from the coordinate of the current collection point. Using the model it was experimentally confirmed that in the section of the contact wire with local wear, not only the temperature rise occurs but also the current redistribution due to the smaller cross section. Thus, the current share in other longitudinal wires of the scale model increases and their temperature rises. Scale and mathematical models are constructed with allowance for laboratory clamps and supporting elements that participate in the removal of heat from the investigated wires. Obtained study results of the scale model allow to draw a conclusion about the adequacy of the mathematical model and its correspondence to the real physical process. These conclusions indicate the possibility of applying mathematical model for calculating real catenary, taking into account the uneven contact wear wire and the armature of the contact network.


2020 ◽  
Vol 96 (3s) ◽  
pp. 169-174
Author(s):  
Ю.М. Герасимов ◽  
Н.Г. Григорьев ◽  
А.В. Кобыляцкий ◽  
Я.Я. Петричкович

Рассматриваются архитектурные, схемотехнические и конструктивно-топологические особенности асинхронного радиационно стойкого ОЗУ 1657РУ2У емкостью 16 Мбит с организацией (1Мx16)/(2Mx8), изготавливаемого по коммерческой КМОП-технологии объемного кремния уровня 130 нм. СБИС ОЗУ нечувствительна к эффекту «защелкивания», имеет повышенные дозовую стойкость и сбоеустойчивость при воздействии отдельных ядерных частиц (ОЯЧ), протонов и нейтронов (ТЧ). The paper highlights architectural, schematic and topological features of the radiation hardened 16 Mbit CMOS SRAM with configurable organization 1Mx16/2Mx8, which is immune to latch-up and with improved total dose and heavy particles tolerance.


Sign in / Sign up

Export Citation Format

Share Document