Wound Healing and Tissue Regeneration

Author(s):  
Leo Gross ◽  
Lawrence W. Smith
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2005 ◽  
Vol 16 (12) ◽  
pp. 918-924 ◽  
Author(s):  
Hongrun Yu ◽  
Subburaman Mohan ◽  
Godfred L. Masinde ◽  
David J. Baylink

Author(s):  
Shobhit Mohan ◽  
Lalit Mohan ◽  
Renu Sangal ◽  
Neelu Singh

<p class="abstract">Platelet rich plasma (PRP) therapies in medicine has become increasing popular during the last decade. The interest in in the application of PRP in dermatology and cosmetology has increased recently in different applications such as alopecia, skin rejuvenation, wound healing, scar revision, and tissue regeneration. PRP is an autologous blood product obtained from the blood of the patients. The detailed knowledge about PRP should help clinicians better understand this therapy. In this view, the current review was done for a better understanding of what pathologies can be corrected with PRP.</p>


2021 ◽  
Vol 17 (9) ◽  
pp. 1840-1849
Author(s):  
Mao Li ◽  
Min Hu ◽  
Honglian Zeng ◽  
Bo Yang ◽  
Yi Zhang ◽  
...  

Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.


2019 ◽  
Vol 7 (10) ◽  
pp. 4248-4259 ◽  
Author(s):  
Ruiying Huang ◽  
Jian Wang ◽  
Haoxiang Chen ◽  
Xuelei Shi ◽  
Xiaocheng Wang ◽  
...  

A tissue engineered skin is designed and fabricated by 3D printing, which has a therapeutic effect on wound healing and skin tissue regeneration.


3 Biotech ◽  
2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Ali Said ◽  
Naveera Naeem ◽  
Sami Siraj ◽  
Taous Khan ◽  
Adil Javed ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 101-106
Author(s):  
Zainab Qureshi ◽  
Taous Khan ◽  
Abdul Jabbar Shah ◽  
Fazli Wahid

This study was conducted to evaluate the topical efficacy of Solanum incanum for the treatment of partial-thickness burn in mice model. Mice were treated with topical ointment of S. incanum three times daily for 14 days. The wound healing was observed through wound contraction and histological parameters. The group treated with S. incanum ointment showed 81% reduction in wound area as compared to negative control where wound area reduced to 22%. The histological analysis further confirmed that ointment favors the tissue regeneration and reepithelization thus heal wound rapidly as com-pared to other groups. In conclusion, S. incanum extract enhances wound healing and tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document