Multifunctional Zinc Oxide/Silver Bimetallic Nanomaterial-Loaded Nanofibers for Enhanced Tissue Regeneration and Wound Healing

2021 ◽  
Vol 17 (9) ◽  
pp. 1840-1849
Author(s):  
Mao Li ◽  
Min Hu ◽  
Honglian Zeng ◽  
Bo Yang ◽  
Yi Zhang ◽  
...  

Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.

Author(s):  
Eva Vonbrunn ◽  
Marc Mueller ◽  
Melanie Pichlsberger ◽  
Monika Sundl ◽  
Alexander Helmer ◽  
...  

Mesenchymal stem/stromal cells (MSCs) exert beneficial effects during wound healing, and cell-seeded scaffolds are a promising method of application. Here, we compared the suitability of a clinically used collagen/elastin scaffold (Matriderm) with an electrospun Poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffold as carriers for human amnion-derived MSCs (hAMSCs). We created an epidermal-like PCL/PLA scaffold and evaluated its microstructural, mechanical, and functional properties. Sequential spinning of different PCL/PLA concentrations resulted in a wide-meshed layer designed for cell-seeding and a dense-meshed layer for apical protection. The Matriderm and PCL/PLA scaffolds then were seeded with hAMSCs, with or without Matrigel coating. The quantity and quality of the adherent cells were evaluated in vitro. The results showed that hAMSCs adhered to and infiltrated both scaffold types but on day 3, more cells were observed on PCL/PLA than on Matriderm. Apoptosis and proliferation rates were similar for all carriers except the coated Matriderm, where apoptotic cells were significantly enhanced. On day 8, the number of cells decreased on all carrier types except the coated Matriderm, which had consistently low cell numbers. Uncoated Matriderm had the highest percentage of proliferative cells and lowest apoptosis rate of all carrier types. Each carrier also was topically applied to skin wound sites in a mouse model and analyzed in vivo over 14 days via optical imaging and histological methods, which showed detectable hAMSCs on all carrier types on day 8. On day 14, all wounds exhibited newly formed epidermis, and all carriers were well-integrated into the underlying dermis and showing signs of degradation. However, only wounds treated with uncoated PCL/PLA maintained a round appearance with minimal contraction. Overall, the results support a 3-day in vitro culture of scaffolds with hAMSCs before wound application. The PCL/PLA scaffold showed higher cell adherence than Matriderm, and the effect of the Matrigel coating was negligible, as all carrier types maintained sufficient numbers of transplanted cells in the wound area. The anti-contractive effects of the PCL/PLA scaffold offer potential new therapeutic approaches to wound care.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolò Baranzini ◽  
Laura Pulze ◽  
Gianluca Tettamanti ◽  
Francesco Acquati ◽  
Annalisa Grimaldi

Several studies have recently demonstrated that the correct regeneration of damaged tissues and the maintaining of homeostasis after wounds or injuries are tightly connected to different biological events, involving immune response, fibroplasia, and angiogenetic processes, in both vertebrates and invertebrates. In this context, our previous data demonstrated that the Hirudo verbana recombinant protein rHvRNASET2 not only plays a pivotal role in innate immune modulation, but is also able to activate resident fibroblasts leading to new collagen production, both in vivo and in vitro. Indeed, when injected in the leech body wall, which represents a consolidated invertebrate model for studying both immune response and tissue regeneration, HvRNASET2 induces macrophages recruitment, fibroplasia, and synthesis of new collagen. Based on this evidence, we evaluate the role of HvRNASET2 on muscle tissue regeneration and extracellular matrix (ECM) remodeling in rHvRNASET2-injected wounded leeches, compared to PBS-injected wounded leeches used as control. The results presented here not only confirms our previous evidence, reporting that HvRNASET2 leads to an increased collagen production, but also shows that an overexpression of this protein might influence the correct progress of muscle tissue regeneration. Moreover, due to its inhibitory effect on vasculogenesis and angiogenesis, HvRNASET2 apparently interfere with the recruitment of the myoendothelial vessel-associated precursor cells that in turn are responsible for muscle regeneration during wound healing repair.


2020 ◽  
Vol 21 (13) ◽  
pp. 1301-1312 ◽  
Author(s):  
Sandeep K. Shukla ◽  
Ajay K. Sharma ◽  
Vanya Gupta ◽  
Aman Kalonia ◽  
Priyanka Shaw

: Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. : This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Atiqah Salleh ◽  
Mh Busra Fauzi

Wound is defined as primarily damaged or disruption of skin contributed to the loss of its microstructure stability and which undergoes complex wound healing process. However, there are tons of factors that could affect the wound healing process such as infection and slow angiogenesis. Involvement of nanotechnologies therapies in wound care research aims to facilitates this healing process. Quantum dots (QDs) are an advanced nanomaterial technology found to be useful in clinical and biomedical applications. This review has been carried out to provide a summary of the application of QDs in acute or chronic wound healing. A thorough searching was done via Web of Science and SCOPUS database to obtain relevant articles including the in vivo, in vitro and in ovo studies. The results demonstrated a similar effect of different types of QDs, or an improvement of QDs in wound healing, antibacterial and angiogenesis properties. This review demonstrated the effectiveness of QDs for the wound healing process mainly by their antibacterial activity. Uniquely, the antibacterial effect unraveled an increasing trend over time influenced by the various concentration of QDs. In conclusion, the application of QDs support the wound healing phases and proven to be effective in vivo, in vitro and in ovo. However, the future QDs work should focus on the molecular level for the details of cellular interactions and pathways.


2021 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results: We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro . Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


2020 ◽  
Author(s):  
Donald R. Griffin ◽  
Maani M. Archang ◽  
Chen H. Kuan ◽  
Westbrook M. Weaver ◽  
Jason S. Weinstein ◽  
...  

AbstractBiomaterial scaffolds represent a promising approach for material-based tissue regeneration. We previously developed microporous annealed particle (MAP) hydrogels - a flowable, microparticle-based hydrogel in which neighboring hydrogel particles are linked in situ to form a porous scaffold that accelerates wound healing. To promote more extensive tissue ingrowth before scaffold degradation, we aimed to slow scaffold degradation by switching the chirality of the crosslinking peptides from L-peptides to D-peptides. Unexpectedly, despite showing the predicted slower enzymatic degradation in vitro, D-peptide crosslinked MAP hydrogel (D-MAP) hastened material degradation in vivo and imparted significant tissue regeneration to healed cutaneous wounds, including increased tensile strength and hair neogenesis. By themselves, D-chiral peptides were poor activators of macrophage innate immune signaling in vivo, but MAP particles elicit IL-33 type 2 myeloid cell recruitment which is amplified in vivo in the presence of D-peptides. Remarkably, D-MAP elicited significant antigen-specific immunity against the D-chiral peptides, and an intact adaptive immune system was required for the hydrogel-induced skin regeneration. These findings demonstrate that the generation of an adaptive immune response from a biomaterial is sufficient to induce cutaneous regenerative healing despite faster scaffold degradation.


2020 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in craniofacial region is a major challenge, and the soft tissue regeneration is crucial in determining the therapeutic outcome of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) which are homologous to craniofacial tissue, and represent a promising source for craniofacial tissue regeneration. Exosomes, which contained compound bioactive contents, are the key factors of stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue.Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularisation were detected by measuring wound area, histological and immunofluorescence analysis in the palate gingiva CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo mediated ECs angiogenesis in vitro was tested by immunofluorescence staining, Western blot and Pull-Down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect the vascularisation and wound healing through Cdc42.Results: We showed that SCAP-Exo promoted tissue regeneration of palatal gingiva CSD by enhancing vascularisation in the early phase in vivo, and also indicated SCAP-Exo improved the angiogenic capacity of endothelial cells (ECs) in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via cell division cycle 42 (Cdc42) signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs, and the Cdc42 protein could be reused directly by the recipient ECs, which resulted in the activation of Cdc42 dependent filopodia formation and elevation of cell migration of ECs.Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used as a cell-free approach to optimize tissue regeneration in the clinic.


RSC Advances ◽  
2017 ◽  
Vol 7 (81) ◽  
pp. 51729-51743 ◽  
Author(s):  
Thangavel Shanmugasundaram ◽  
Manikkam Radhakrishnan ◽  
Venugopal Gopikrishnan ◽  
Krishna Kadirvelu ◽  
Ramasamy Balagurunathan

Antibacterial, antifungal and wound healing potential of actinobacterially synthesised Ag, Au and Ag/Au nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document