The Arachidonic Acid Signal System in the Thyroid: Regulation by Thyrotropin and Insulin/IGF-I

Author(s):  
Kazuo Tahara ◽  
Motoyasu Saji ◽  
Salvatore M. Aloj ◽  
Leonard D. Kohn
Keyword(s):  
2001 ◽  
Vol 120 (5) ◽  
pp. A219-A219
Author(s):  
L CHENG ◽  
W CAO ◽  
K HARNETT ◽  
J BEHAR ◽  
P BIANCANI

2004 ◽  
Vol 171 (4S) ◽  
pp. 125-125
Author(s):  
Lizhong Wang ◽  
Kazunari Sato ◽  
Norihiko Tsuchiya ◽  
Chikara Ohyama ◽  
Shigeru Satoh ◽  
...  

2013 ◽  
Vol 121 (10) ◽  
Author(s):  
C Sievers ◽  
MK Auer ◽  
J Klotsche ◽  
AP Athanasoulia ◽  
HJ Schneider ◽  
...  

1988 ◽  
Vol 59 (01) ◽  
pp. 073-076 ◽  
Author(s):  
Sergio Cortelazzo ◽  
Monica Galli ◽  
Donatella Castagna ◽  
Piera Viero ◽  
Giovanni de Gaetano ◽  
...  

SummaryIn patients with myeloproliferative disorders (MPD) a group of related diseases of the bone marrow stem cell and recurrent haemorrhagic and/or thrombotic complications, the production of aggregating prostaglandins (PGs) may be normal or slightly reduced, while PGI2 production is normal. However, MPD platelet sensitivity to antiaggregatory PGs is still unknown.We studied the potency of PGD2, PGI2 and PGEi as inhibitors of platelet aggregation induced by threshold aggregating concentrations of arachidonic acid and U-46619-analogue of the cyclic endoperoxide PGH2 in 20 patients with MPD in comparison with healthy controls, with the aim of evaluating the sensitivity of MPD platelets to antiaggregatory PGs. In these patients platelet prostanoid metabolism was normal. However, the functional response of platelets to aggregating and antiaggregating prostanoids was shifted towards potentially increased platelet aggregation response. These findings could have a clinical relevance in view of the haemostatic and thrombotic complications so frequent in MPD.


1988 ◽  
Vol 60 (02) ◽  
pp. 314-318 ◽  
Author(s):  
A M A Gader ◽  
H Bahakim ◽  
F A Jabbar ◽  
A L Lambourne ◽  
T H Gaafar ◽  
...  

SummaryThe aggregation of platelets collected from maternal/neonatal pairs (n = 240) at the time of childbirth, was studied in response to multiple doses of ADP, collagen, arachidonic acid and ristocetin. Similar responses were obtained from healthy nonpregnant adult controls for comparison. The lag phase, slope of the aggregation curves as well as maximum aggregation (MA%) were recorded and analysed. Neonatal and adult platelets exhibited more enhanced responses to decreasing doses of ADP, arachidonic acid and ristocetin, than maternal platelets. These enhanced responses were exhibited more consistantly in the slopes of the aggregation curves than in MA%. Although neonatal platelets have shown longer lag phase in their responses to collagen, the rate of the aggregation reaction was significantly faster than maternal platelets, with no differences in MA%. These results contradict many previous reports suggesting impaired aggregation responses of neonatal platelets to these agonist. The possible reasons for these contradictions were discussed.


1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document