Molecular Dynamics of Water in Foods and Related Model Systems: Multinuclear Spin Relaxation Studies and Comparison with Theoretical Calculations

Author(s):  
Ion C. Baianu ◽  
Thomas F. Kumosinski ◽  
Peter J. Bechtel ◽  
Adela Mora ◽  
Lazaros T. Kakalis ◽  
...  
2009 ◽  
Vol 20 (02) ◽  
pp. 179-196 ◽  
Author(s):  
H. H. KART ◽  
G. WANG ◽  
I. KARAMAN ◽  
T. ÇAĞIN

Molecular dynamics simulations technique is used to study the consolidation of two nanoparticles of Cu element. We have studied sintering processes of two nanoparticles at different temperatures. Two model systems with 4 and 10 nm diameter of particles are selected to study the sintering process of the two nanoparticles. Orientation effects on the physical properties of consolidation of two nanoparticles with respect to each other are investigated. Temperature effects on the consolidation of two nanoparticles are also studied. The order of the values obtained in the simulation for the constant volume heat capacity and latent heat of fusion is good agreement with the bulk results. Moreover, we have investigated the size effects on the consolidation of two different sizes of nanoparticles, that is, one particle of diameter with 10 nm is fixed while the other one is changing from 1 to 10 nm. Melting temperatures of the copper nanoparticles are found to be decreased as the size of the particle decreases. It is found that simulation results are compatible with the other theoretical calculations.


2021 ◽  
Vol 125 (3) ◽  
pp. 841-849 ◽  
Author(s):  
Krzysztof Tadyszak ◽  
Radosław Mrówczyński ◽  
Raanan Carmieli

Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Aviñó ◽  
Elena Cubero ◽  
Raimundo Gargallo ◽  
Carlos González ◽  
Modesto Orozco ◽  
...  

The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.


Sign in / Sign up

Export Citation Format

Share Document