Computer Modeling of Heterogeneous β-Cell Populations

Author(s):  
Arthur Sherman ◽  
Paul Smolen
2011 ◽  
Vol 300 (5) ◽  
pp. E923-E932 ◽  
Author(s):  
Madeleine Speck ◽  
Young Min Cho ◽  
Ali Asadi ◽  
Francesco Rubino ◽  
Timothy J. Kieffer

Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. We performed DJB or sham surgery in GK and Wistar rats. Blood glucose levels and glucose tolerance were monitored, and the plasma insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured. β-Cell area, islet fibrosis, intestinal morphology, and the density of enteroendocrine cells expressing GLP-1 and/or GIP were quantified. Improved postprandial glycemia was observed from 3 mo after DJB in diabetic GK rats, persisting until 12 mo after surgery. Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.


Author(s):  
JaeAnn M. Dwulet ◽  
Jennifer K. Briggs ◽  
Richard K.P. Benninger

AbstractThe islets of Langerhans exist as a multicellular network that is important for the regulation of blood glucose levels. The majority of cells in the islet are insulin-producing β-cells, which are excitable cells that are electrically coupled via gap junction channels. β-cells have long been known to display heterogeneous functionality. However, due to gap junction electrical coupling, β-cells show coordinated [Ca2+] oscillations when stimulated with glucose, and global quiescence when unstimulated. Small subpopulations of highly functional β-cells have been suggested to control the dynamics of [Ca2+] and insulin release across the islet. In this study, we investigated the theoretical basis of whether small subpopulations of β-cells can disproportionality control islet [Ca2+] dynamics. Using a multicellular model of the islet, we generated continuous or bimodal distributions of β-cell heterogeneity and examined how islet [Ca2+] dynamics depended on the presence of cells with increased excitability or increased oscillation frequency. We found that the islet was susceptible to marked suppression of [Ca2+] when a ∼10% population of cells with high metabolic activity was hyperpolarized; where hyperpolarizing cells with normal metabolic activity had little effect. However, when these highly metabolic cells were removed from the islet model, near normal [Ca2+] remained. Similarly, when ∼10% of cells with either the highest frequency or earliest elevations in [Ca2+] were removed from the islet, the [Ca2+] oscillation frequency remained largely unchanged. Overall these results indicate that small populations of β-cells with either increased excitability or increased frequency, or signatures of [Ca2+] dynamics that suggest such properties, are unable to disproportionately control islet-wide [Ca2+] via gap junction coupling. As such, we need to reconsider the physiological basis for such small β-cell populations or the mechanism by which they may be acting to control normal islet function.Author summaryMany biological systems can be studied using network theory. How heterogeneous cell subpopulations come together to create complex multicellular behavior is of great value in understanding function and dysfunction in tissues. The pancreatic islet of Langerhans is a highly coupled structure that is important for maintaining blood glucose homeostasis. β-cell electrical activity is coordinated via gap junction communication. The function of the insulin-producing β-cell within the islet is disrupted in diabetes. As such, to understand the causes of islet dysfunction we need to understand how different cells within the islet contribute to its overall function via gap junction coupling. Using a computational model of β-cell electrophysiology, we investigated how small highly functional β-cell populations within the islet contribute to its function. We found that when small populations with greater functionality were introduced into the islet, they displayed signatures of this enhanced functionality. However, when these cells were removed, the islet, retained near-normal function. Thus, in a highly coupled system, such as an islet, the heterogeneity of cells allows small subpopulations to be dispensable, and thus their absence is unable to disrupt the larger cellular network. These findings can be applied to other electrical systems that have heterogeneous cell populations.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008948
Author(s):  
JaeAnn M. Dwulet ◽  
Jennifer K. Briggs ◽  
Richard K. P. Benninger

The islets of Langerhans exist as multicellular networks that regulate blood glucose levels. The majority of cells in the islet are excitable, insulin-producing β-cells that are electrically coupled via gap junction channels. β-cells are known to display heterogeneous functionality. However, due to gap junction coupling, β-cells show coordinated [Ca2+] oscillations when stimulated with glucose, and global quiescence when unstimulated. Small subpopulations of highly functional β-cells have been suggested to control [Ca2+] dynamics across the islet. When these populations were targeted by optogenetic silencing or photoablation, [Ca2+] dynamics across the islet were largely disrupted. In this study, we investigated the theoretical basis of these experiments and how small populations can disproportionality control islet [Ca2+] dynamics. Using a multicellular islet model, we generated normal, skewed or bimodal distributions of β-cell heterogeneity. We examined how islet [Ca2+] dynamics were disrupted when cells were targeted via hyperpolarization or populations were removed; to mimic optogenetic silencing or photoablation, respectively. Targeted cell populations were chosen based on characteristics linked to functional subpopulation, including metabolic rate of glucose oxidation or [Ca2+] oscillation frequency. Islets were susceptible to marked suppression of [Ca2+] when ~10% of cells with high metabolic activity were hyperpolarized; where hyperpolarizing cells with normal metabolic activity had little effect. However, when highly metabolic cells were removed from the model, [Ca2+] oscillations remained. Similarly, when ~10% of cells with either the highest frequency or earliest elevations in [Ca2+] were removed from the islet, the [Ca2+] oscillation frequency remained largely unchanged. Overall, these results indicate small populations of β-cells with either increased metabolic activity or increased frequency are unable to disproportionately control islet-wide [Ca2+] via gap junction coupling. Therefore, we need to reconsider the physiological basis for such small β-cell populations or the mechanism by which they may be acting to control normal islet function.


Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.


2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


2008 ◽  
Vol 116 (09) ◽  
Author(s):  
SM Schmid ◽  
M Hallschmid ◽  
K Jauch-Chara ◽  
KM Oltmanns ◽  
A Peters ◽  
...  
Keyword(s):  
Β Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document