Intensive Care Unit Ultrasound for Venous Thromboembolism

Author(s):  
Genese Lamare ◽  
Chee M. Chan
2021 ◽  
Author(s):  
Monika Zdanyte ◽  
Dominik Rath ◽  
Meinrad Gawaz ◽  
Tobias Geisler

AbstractSARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is associated with high risk of venous and arterial thrombosis. Thrombotic complications, especially pulmonary embolism, lead to increased all-cause mortality in both intensive care unit and noncritically ill patients. Damage and activation of vascular endothelium, platelet activation, followed by thrombotic and fibrinolytic imbalance as well as hypercoagulability are the key pathomechanisms in immunothrombosis leading to a significant increase in thromboembolism in coronavirus disease 2019 (COVID-19) compared with other acute illnesses. In this review article, we discuss the incidence and prognosis, diagnosis, prevention, and treatment of venous thromboembolism in patients with COVID-19 disease, based on clinical experience and research available to date.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2313-2313
Author(s):  
Minh Q Tran ◽  
Steven L Shein ◽  
Hong Li ◽  
Sanjay P Ahuja

Abstract Introduction: Venous thromboembolism (VTE) in Pediatric Intensive Care Unit (PICU) patients is associated with central venous catheter (CVC) use. However, risk factors for VTE development in PICU patients with CVCs are not well established. The impact of Hospital-Acquired VTE in the PICU on clinical outcomes needs to be studied in large multicenter databases to identify subjects that may benefit from screening and/or prophylaxis. Method: With IRB approval, the Virtual Pediatric Systems, LLC database was interrogated for children < 18yo admitted between 01/2009-09/2014 who had PICU length of stay (LOS) <1 yr and a CVC present at some point during PICU care. The exact timing of VTE diagnosis was unavailable in the database, so VTE-PICU was defined as an "active" VTE that was not "present at admission". VTE-prior was defined as a VTE that was "resolved," "ongoing" or "present on admission." Variables extracted from the database included demographics, primary diagnosis category, and Pediatric Index of Mortality (PIM2) score. PICU LOS was divided into quintiles. Chi squared and Wilcoxon rank-sum were used to identify variables associated with outcomes, which were then included in multivariate models. Our primary outcome was diagnosis of VTE-PICU and our secondary outcome was PICU mortality. Children with VTE-prior were included in the mortality analyses, but not the VTE-PICU analyses. Data shown as median (IQR) and OR (95% CI). Results: Among 143,524 subjects, the median age was 2.8 (0.47-10.31) years and 55% were male. Almost half (44%) of the subjects were post-operative. The median PIM2 score was -4.11. VTE-prior was observed in 2498 patients (1.78%) and VTE-PICU in 1741 (1.2%). The incidence of VTE-PICU were 852 (1.7%) in patients ≤ 1 year old, 560 (0.9%) in patients 1-12 years old, and 303 (1.1%) in patients ≥ 13 years old (p < 0.0001). In univariate analysis, variables associated with a diagnosis of VTE-PICU were post-operative state, four LOS quintiles (3-7, 7-14, and 14-21 and >21 days) and several primary diagnosis categories: cardiovascular, gastrointestinal, infectious, neurologic, oncologic, genetic, and orthopedic. Multivariate analysis showed increased risk of VTE with cardiovascular diagnosis, infectious disease diagnosis, and LOS > 3 d (Table 1). The odds increased with increasing LOS: 7 d < LOS ≤ 14 d (5.18 [4.27-6.29]), 14 d < LOS ≤ 21 d (7.96 [6.43-9.82]), and LOS > 21 d (20.73 [17.29-24.87]). Mortality rates were 7.1% (VTE-none), 7.2% (VTE-prior), and 10.1% (VTE-PICU) (p < 0.0001). In the multivariate model, VTE-PICU (1.25 [1.05-1.49]) and VTE-prior (1.18 [1.002-1.39]) were associated with death vs. VTE-none. PIM2 score, trauma, and several primary diagnosis categories were also independently associated with death (Table 2). Conclusion: This large, multicenter database study identified several variables that are independently associated with diagnosis of VTE during PICU care of critically ill children with a CVC. Children with primary cardiovascular or infectious diseases, and those with PICU LOS >3 days may represent specific populations that may benefit from VTE screening and/or prophylaxis. Hospital-Acquired VTE in PICU was independently associated with death in our database. Additional analysis of this database, including adding specific diagnoses and secondary diagnoses, may further refine risk factors for Hospital-Acquired VTE among PICU patients with a CVC. Table 1. Multivariate analysis of Factors Associated with VTE-PICU. Factors Odds Ratio 95% Confidence Interval 3d < LOS ≤ 7d vs LOS ≤ 3d 2.19 1.78-2.69 7d < LOS ≤ 14d vs LOS ≤ 3d 5.18 4.27-6.29 14d < LOS ≤ 21d vs LOS ≤ 3d 7.95 6.44-9.82 LOS > 21d vs LOS ≤ 3d 20.73 17.29-24.87 Age 1.00 0.99-1.01 Post-operative 0.89 0.80-0.99 PIM2 Score 1.47 1.01-1.07 Primary Diagnosis: Cardiovascular 1.50 1.31-1.64 Primary Diagnosis: Infectious 1.50 1.27-1.77 Primary Diagnosis: Genetics 0.32 0.13-0.78 Table 2. Multivariate Analysis of Factors Associated with PICU Mortality. Factors Odds Ratio 95% ConfidenceInterval VTE-prior 1.18 1.00-1.39 VTE-PICU 1.25 1.05-1.49 PIM2 Score 2.08 2.05-2.11 Trauma 1.92 1.77-2.07 Post-operative 0.45 0.42-0.47 Primary Diagnosis: Genetic 2.07 1.63-2.63 Primary Diagnosis: Immunologic 2.45 1.51-3.95 Primary Diagnosis: Hematologic 1.63 1.30-2.06 Primary Diagnosis: Metabolic 0.71 0.58-0.87 Primary Diagnosis: Infectious 1.47 1.36-1.59 Primary Diagnosis: Neurologic 1.37 1.27-1.47 Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 (4) ◽  
pp. 71-71
Author(s):  
Xiaolan Chen ◽  
Jiali Huang ◽  
Jingxuan Liu ◽  
Hui Deng ◽  
Lei Pan

2021 ◽  
Vol 9 ◽  
pp. 205031212110549
Author(s):  
Jenny Yi Chen Hsieh ◽  
Juliana Yin Li Kan ◽  
Shaikh Abdul Matin Mattar ◽  
Yan Qin

Objectives: This study aims to estimate the prevalence of sinus tachycardia in hospitalized patients with mild COVID-19 infection and to identify the clinical, radiological, and biological characteristics associated with sinus tachycardia. Methods: A retrospective cohort study was conducted on patients with mild COVID-19 infection and sinus tachycardia during hospitalization. Outcomes measured included incidences of venous thromboembolism, high-dependency/intensive care unit admission, laboratory parameters, and radiological findings. Results: A total of 236 COVID-19 positive patients admitted to Singapore General Hospital isolation general wards from 1 June 2020 to 30 June 2020 were included in this study. Ninety-seven (41.1%) patients had sinus tachycardia on or during their admission. All patients were monitored in general wards and discharged to community quarantine facilities. None required oxygen support or high-dependency/intensive care unit admission. Sinus tachycardia was associated with increased C-reactive protein level (odds ratio = 1.033, 95% confidence interval = 1.002–1.066), abnormal chest X-ray findings (odds ratio = 3.142, 95% confidence interval = 1.390–7.104), and longer hospitalization (odds ratio = 1.117, 95% confidence interval = 1.010–1.236). There was no significant statistical association between sinus tachycardia and incidences of venous thromboembolism. Conclusion: This study suggests that patients with mild COVID-19 infection and concurrent sinus tachycardia are more likely to have higher inflammatory marker levels, abnormal imaging, and prolonged hospitalization. However, no significant association between sinus tachycardia and thromboembolism is identified in mild COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document