Overview and Translational Impact of Space Cell Biology Research

Author(s):  
Neal R. Pellis ◽  
Alexander Chouker ◽  
B. Yic ◽  
Svantje Tauber ◽  
Oliver Ullrich ◽  
...  
2008 ◽  
Vol 2 (2) ◽  
pp. 111-121
Author(s):  
Ragini Raj Singh ◽  
◽  
Amit Ron ◽  
Nick Fishelson ◽  
Irena Shur ◽  
...  

Dielectric spectroscopy (DS) of living biological cells is based on the analysis of cells suspended in a physiological medium. It provides knowledge of the polarization-relaxation response of the cells to external electric field as function of the excitation frequency. This response is strongly affected by both structural and molecular properties of the cells and, therefore, can reveal rare insights into cell physiology and behaviour. This study demonstrates the mapping potential of DS after cytoplasmic and membranal markers for cell-based screening analysis. The effect of membrane permittivity and cytoplasm conductivity was examined using tagged MBA and MDCK cell lines respectively. The comparison of the dielectric spectra of tagged and native cell lines reveals clear differences between the cells. In addition, the differences in the matching dielectric properties of the cells were discovered. Those findings support the high distinction resolution and sensitivity of DS after fine molecular and cellular changes, and hence, highlight the high potential of DS as non invasive screening tool in cell biology research.


2009 ◽  
Vol 187 (5) ◽  
pp. 589-596 ◽  
Author(s):  
Karmella A. Haynes ◽  
Pamela A. Silver

Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological “devices” that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This review surveys recent advances in eukaryotic synthetic biology and describes how synthetic systems can be linked to natural cellular processes in order to manipulate cell behavior and to foster new discoveries in cell biology research.


1998 ◽  
Vol 3 (4) ◽  
pp. 41-44
Author(s):  
Rita R. Hannah ◽  
Martha L. Jennens-Clough ◽  
Keith V. Wood

In cell biology research and pharmaceutical discovery, physiological responses of mammalian cells are commonly screened using transcriptional assays. Although firefly luciferase is widely used because of its rapid and simple assay, greater precision can be achieved using a second reporter as an internal control. Renilla luciferase serves as an efficient internal control because it can be measured as easily and rapidly using the same instrument. The Dual-Luciferase™ Reporter (DLR™) Assay developed at Promega measures both reporters sequentially within each sample, which eliminates the need to separate the test sample into aliquots for each assay. The expression of each reporter is independently quantitated using selective assay conditions based on their distinctive chemical characteristics. The firefly luciferase is initiated first by the addition of LAR II to the sample or cell lysate. Following measurement of the luminescent output, the firefly reaction is rapidly quenched and the Renilla reaction is simultaneously activated by addition of Stop & Glo™ Reagent, and the luminescence is measured a second time. The DLR™ Assay allows quantitation of both reporters within 4 seconds per well using a 96-well luminometer equipped with two reagent injectors. Multi-well plates may be processed even more rapidly using a CCD-based imaging system.


2020 ◽  
Vol 17 (166) ◽  
pp. 20200013 ◽  
Author(s):  
Zoe Schofield ◽  
Gabriel N. Meloni ◽  
Peter Tran ◽  
Christian Zerfass ◽  
Giovanni Sena ◽  
...  

The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo , the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.


1998 ◽  
Vol 00 (1) ◽  
pp. A.1B.1-A.1B.26
Author(s):  
Nelson H. Cole

Author(s):  
Kevin V. Christ ◽  
Kevin T. Turner

Cell adhesion plays a fundamental role in numerous physiological and pathological processes, and measurements of the adhesion strength are important in fields ranging from basic cell biology research to the development of implantable biomaterials. Our group and others have recently demonstrated that microfluidic devices offer advantages for characterizing the adhesion of cells to protein-coated surfaces [1,2]. Microfluidic devices offer many advantages over conventional assays, including the ability to apply high shear stresses in the laminar regime and the opportunity to directly observe cell behavior during testing. However, a key disadvantage is that such assays require cells to be cultured inside closed microchannels. Assays based on closed channels restrict the types of surfaces that can be examined and are not compatible with many standard techniques in cell biology research. Furthermore, while techniques for cell culture in microchannels have become common, maintaining the viability of certain types of cells in channels remains a challenge.


Author(s):  
Zhen Sun ◽  
Jing Zhao ◽  
Hua Yu ◽  
Chenyang Zhang ◽  
Hu Li ◽  
...  

2016 ◽  
Vol 27 (21) ◽  
pp. 3183-3184
Author(s):  
Bo Huang

Light microscopy has long been an indispensable tool for cell biology research. From biological problems to biological knowledge, there are two more critical links in the light microscopy approach: labeling and quantitative analysis. Therefore, an integrative approach is desirable in order to deal with practical challenges in biological light microscopy.


2013 ◽  
Vol 24 (11) ◽  
pp. 1615-1618 ◽  
Author(s):  
James B. Moseley

A rich and ongoing history of cell biology research has defined the major polymer systems of the eukaryotic cytoskeleton. Recent studies have identified additional proteins that form filamentous structures in cells and can self-assemble into linear polymers when purified. This suggests that the eukaryotic cytoskeleton is an even more complex system than previously considered. In this essay, I examine the case for an expanded definition of the eukaryotic cytoskeleton and present a series of challenges for future work in this area.


Sign in / Sign up

Export Citation Format

Share Document