Helios® Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates

Author(s):  
Inna A. Belyantseva
1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3381-3391 ◽  
Author(s):  
T. Schimmang ◽  
L. Minichiello ◽  
E. Vazquez ◽  
I. San Jose ◽  
F. Giraldez ◽  
...  

The trkB and trkC genes are expressed during the formation of the vestibular and auditory system. To elucidate the function of trkB and trkC during this process, we have analysed mice carrying a germline mutation in the tyrosine kinase catalytic domain of these genes. Neuroanatomical analysis of homozygous mutant mice revealed neuronal deficiencies in the vestibular and cochlear ganglia. In trkB (−/−) animals vestibular neurons and a subset of cochlear neurons responsible for the innervation of outer hair cells were drastically reduced. The peripheral targets of the respective neurons showed severe innervation defects. A comparative analysis of ganglia from trkC (−/−) mutants revealed a moderate reduction of vestibular neurons and a specific loss of cochlear neurons innervating inner hair cells. No nerve fibres were detected in the sensory epithelium containing inner hair cells. A developmental study of trkB (−/−) and trkC (−/−) mice showed that some vestibular and cochlear fibres initially reached their peripheral targets but failed to maintain innervation and degenerated. TrkB and TrkC receptors are therefore required for the survival of specific neuronal populations and the maintenance of target innervation in the peripheral sensory system of the inner ear.


2004 ◽  
Vol 61 (7) ◽  
pp. 1057-1061 ◽  
Author(s):  
Arthur N. Popper ◽  
Dennis T.T. Plachta ◽  
David A. Mann ◽  
Dennis Higgs

Abstract A number of species of clupeid fish, including blueback herring, American shad, and gulf menhaden, can detect and respond to ultrasonic sounds up to at least 180 kHz, whereas other clupeids, including bay anchovies and Spanish sardines, do not appear to detect sounds above about 4 kHz. Although the location for ultrasound detection has not been proven conclusively, there is a growing body of physiological, developmental, and anatomical evidence suggesting that one end organ of the inner ear, the utricle, is likely to be the detector. The utricle is a region of the inner ear that is very similar in all vertebrates studied to date, except for clupeid fish, where it is highly specialized. Behavioural studies of the responses of American shad to ultrasound demonstrate that they show a graded series of responses depending on the sound level and, to a lesser degree, on the frequency of the stimulus. Low-intensity stimuli elicit a non-directional movement of the fish, whereas somewhat higher sound levels elicit a directional movement away from the sound source. Still higher level sounds produce a “wild” chaotic movement of the fish. These responses do not occur until shad have developed the adult utricle that has a three-part sensory epithelium. We speculate that the response of the American shad (and, presumably, other clupeids that can detect ultrasound) to ultrasound evolved to help these species detect and avoid a major predator – echolocating cetaceans. As dolphins echolocate, the fish are able to hear the sound at over 100 m. If the dolphins detect the fish and come closer, the nature of the behavioural response of the fish changes in order to exploit different avoidance strategies and lower the chance of being eaten by the predators.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 484 ◽  
Author(s):  
Anya Rudnicki ◽  
Ofer Isakov ◽  
Kathy Ushakov ◽  
Shaked Shivatzki ◽  
Inbal Weiss ◽  
...  

2019 ◽  
Vol 379 (3) ◽  
pp. 459-471 ◽  
Author(s):  
Lejo Johnson Chacko ◽  
Consolato Sergi ◽  
Theresa Eberharter ◽  
Jozsef Dudas ◽  
Helge Rask-Andersen ◽  
...  

AbstractExpression patterns of transcription factors leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), transforming growth factor-β-activated kinase-1 (TAK1), SRY (sex-determining region Y)-box 2 (SOX2), and GATA binding protein 3 (GATA3) in the developing human fetal inner ear were studied between the gestation weeks 9 and 12. Further development of cochlear apex between gestational weeks 11 and 16 (GW11 and GW16) was examined using transmission electron microscopy. LGR5 was evident in the apical poles of the sensory epithelium of the cochlear duct and the vestibular end organs at GW11. Immunostaining was limited to hair cells of the organ of Corti by GW12. TAK1 was immune positive in inner hair cells of the organ of Corti by GW12 and colocalized with p75 neurotrophic receptor expression. Expression for SOX2 was confined primarily to the supporting cells of utricle at the earliest stage examined at GW9. Intense expression for GATA3 was presented in the cochlear sensory epithelium and spiral ganglia at GW9. Expression of GATA3 was present along the midline of both the utricle and saccule in the zone corresponding to the striolar reversal zone where the hair cell phenotype switches from type I to type II. The spatiotemporal gradient of the development of the organ of Corti was also evident with the apex of the cochlea forming by GW16. It seems that highly specific staining patterns of several transcriptions factors are critical in guiding the genesis of the inner ear over development. Our findings suggest that the spatiotemporal gradient in cochlear development extends at least until gestational week 16.


2019 ◽  
Vol 128 (6_suppl) ◽  
pp. 76S-83S ◽  
Author(s):  
Sung Huhn Kim ◽  
Gi-Sung Nam ◽  
Jae Young Choi

Background: The endolymphatic sac (ES) is a cystic structure situated on the posterior fossa dura and is connected to the luminal space of the vestibular organ through the endolymphatic duct, which branches into the utricular and saccular ducts. Unlike the cochlea and vestibule, the ES does not contain sensory epithelium in its luminal space, and a single layer of epithelial cells line the luminal surface area. The ES in the inner ear is thought to play a role in the regulation of inner ear homeostasis, fluid volume, and immune reaction. If these functions of the ES are disrupted, dysfunction of the inner ear may develop. The most well-known pathology arising from dysfunction of the ES is endolymphatic hydrops, characterized by an enlarged endolymphatic space due to the accumulation of excessive endolymphatic fluid. Although, molecular identities and functional evidence for the roles were identified in animal studies, basic studies of the human ES are relatively uncommon compared with those using animal tissues, because of limited opportunity to harvest the human ES. Methods: In this study, molecular and functional evidence for the role of the human ES in the development of endolymphatic hydrops are reviewed. Results and Conclusions: Although evidence is insufficient, studies using the human ES have mostly produced findings similar to those of animal studies. This review may provide a basis for planning further studies to investigate the pathophysiology of disorders with the finding of endolymphatic hydrops.


2005 ◽  
Vol 56 (5) ◽  
pp. 497 ◽  
Author(s):  
Arthur N. Popper ◽  
John Ramcharitar ◽  
Steven E. Campana

Otoliths are of interest to investigators from several disciplines including systematics, auditory neuroscience, and fisheries. However, there is often very little sharing of information or ideas about otoliths across disciplines despite similarities in the questions raised by different groups of investigators. A major purpose of this paper is to present otolith-related questions common to all disciplines and then demonstrate that the issues are not only similar but also that more frequent interactions would be mutually beneficial. Because otoliths evolved as part of the inner ear to serve the senses of balance and hearing, we first discuss the basic structure of the ear. We then raise several questions that deal with the structure and patterns of otolith morphology and how changes in otoliths with fish age affect hearing and balance. More specifically, we ask about the significance of otolith size and how this might affect ear function; the growth of otoliths and how hearing and balance may or may not change with growth; the significance of different otolith shapes with respect to ear function; the functional significance of otoliths that do not contact the complete sensory epithelium; and why teleost fishes have otoliths and not the otoconia found in virtually all other extant vertebrates.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


Sign in / Sign up

Export Citation Format

Share Document