Genetic Manipulation with Viral Vectors to Assess Metabolism and Adipose Tissue Function

Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Giulia Crispino ◽  
Fabian Galindo Ramirez ◽  
Matteo Campioni ◽  
Veronica Zorzi ◽  
Mark Praetorius ◽  
...  

2006 ◽  
Vol 0 (0) ◽  
pp. 060815083008001
Author(s):  
Hiroaki Mizukami ◽  
Jun Mimuro ◽  
Tsuyoshi Ogura ◽  
Takashi Okada ◽  
Masashi Urabe ◽  
...  

Biology Open ◽  
2021 ◽  
Author(s):  
E.S. Zubkova ◽  
I.B. Beloglazova ◽  
E.I. Ratner ◽  
D.T. Dyikanov ◽  
K.V. Dergilev ◽  
...  

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment to MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable however showing 25-30%. growth rate slowdown. Moreover, we found increase of SERPINB2 mRNA expression in human MSC whereas expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


2013 ◽  
Vol 304 (10) ◽  
pp. E1053-E1063 ◽  
Author(s):  
Johanna L. Barclay ◽  
Anton Shostak ◽  
Alexei Leliavski ◽  
Anthony H. Tsang ◽  
Olaf Jöhren ◽  
...  

Perturbation of circadian rhythmicity in mammals, either by environmental influences such as shiftwork or by genetic manipulation, has been associated with metabolic disturbance and the development of obesity and diabetes. Circadian clocks are based on transcriptional/translational feedback loops, comprising positive and negative components. Whereas the metabolic effects of deletion of the positive arm of the clock gene machinery, as in Clock- or Bmal1-deficient mice, have been well characterized, inactivation of Period genes ( Per1–3) as components of the negative arm have more complex, sometimes contradictory effects on energy homeostasis. The CRYPTOCHROMEs are critical interaction partners of PERs, and simultaneous deletion of Cry1 and - 2 results in behavioral and molecular circadian arrhythmicity. We show that, when challenged with a high-fat diet, Cry1/2−/− mice rapidly gain weight and surpass that of wild-type mice, despite displaying hypophagia. Transcript analysis of white adipose tissue reveals upregulated expression of lipogenic genes, many of which are insulin targets. High-fat diet-induced hyperinsulinemia, as a result of potentiated insulin secretion, coupled with selective insulin sensitivity in adipose tissue of Cry1/2−/− mice, correlates with increased lipid uptake. Collectively, these data indicate that Cry deficiency results in an increased vulnerability to high-fat diet-induced obesity that might be mediated by increased insulin secretion and lipid storage in adipose tissues.


2017 ◽  
Vol 313 (6) ◽  
pp. E641-E650 ◽  
Author(s):  
Lauren E. Wright ◽  
Denis Vecellio Reane ◽  
Gabriella Milan ◽  
Anna Terrin ◽  
Giorgia Di Bello ◽  
...  

Intracellular calcium influences an array of pathways and affects cellular processes. With the rapidly progressing research investigating the molecular identity and the physiological roles of the mitochondrial calcium uniporter (MCU) complex, we now have the tools to understand the functions of mitochondrial Ca2+ in the regulation of pathophysiological processes. Herein, we describe the role of key MCU complex components in insulin resistance in mouse and human adipose tissue. Adipose tissue gene expression was analyzed from several models of obese and diabetic rodents and in 72 patients with obesity as well as in vitro insulin-resistant adipocytes. Genetic manipulation of MCU activity in 3T3-L1 adipocytes allowed the investigation of the role of mitochondrial calcium uptake. In insulin-resistant adipocytes, mitochondrial calcium uptake increased and several MCU components were upregulated. Similar results were observed in mouse and human visceral adipose tissue (VAT) during the progression of obesity and diabetes. Intriguingly, subcutaneous adipose tissue (SAT) was spared from overt MCU fluctuations. Furthermore, MCU expression returned to physiological levels in VAT of patients after weight loss by bariatric surgery. Genetic manipulation of mitochondrial calcium uptake in 3T3-L1 adipocytes demonstrated that changes in mitochondrial calcium concentration ([Ca2+]mt) can affect mitochondrial metabolism, including oxidative enzyme activity, mitochondrial respiration, membrane potential, and reactive oxygen species formation. Finally, our data suggest a strong relationship between [Ca2+]mt and the release of IL-6 and TNFα in adipocytes. Altered mitochondrial calcium flux in fat cells may play a role in obesity and diabetes and may be associated with the differential metabolic profiles of VAT and SAT.


2006 ◽  
Vol 17 (9) ◽  
pp. 921-928 ◽  
Author(s):  
Hiroaki Mizukami ◽  
Jun Mimuro ◽  
Tsuyoshi Ogura ◽  
Takashi Okada ◽  
Masashi Urabe ◽  
...  

Biology Open ◽  
2021 ◽  
Author(s):  
Christos Kiourtis ◽  
Ania Wilczynska ◽  
Colin Nixon ◽  
William Clark ◽  
Stephanie May ◽  
...  

Mice are a widely used pre-clinical model system in large part due to their potential for genetic manipulation. The ability to manipulate gene expression in specific cells under temporal control is a powerful experimental tool. The liver is central to metabolic homeostasis and a site of many diseases, making the targeting of hepatocytes attractive. Adeno-Associated Virus 8 (AAV8) vectors are valuable instruments for the manipulation of hepatocellular gene expression. However, their off-target effects in mice have not been thoroughly explored. Here, we sought to identify the short-term off-target effects of AAV8 administration in mice. To do this, we injected C57BL/6J Wild-Type mice with either recombinant AAV8 vectors expressing Cre recombinase or control AAV8 vectors and characterised the changes in general health and in liver physiology, histology and transcriptomics compared to uninjected controls. We observed an acute and transient trend for reduction in homeostatic liver proliferation together with induction of the DNA damage marker γH2AX following AAV8 administration. The latter was enhanced upon Cre recombinase expression by the vector. Furthermore, we observed transcriptional changes in genes involved in circadian rhythm and response to infection. Notably, there were no additional transcriptomic changes upon expression of Cre recombinase by the AAV8 vector. Overall, there was no evidence of liver injury, and only mild T-cell infiltration was observed 28 days following AAV8 infection. These data advance the technique of hepatocellular genome editing through Cre-Lox recombination using Cre expressing AAV vectors, demonstrating their minimal effects on murine physiology and highlight the more subtle off target effects of these systems.


2006 ◽  
Vol 0 (0) ◽  
pp. 060913044654009
Author(s):  
Hiroaki Mizukami ◽  
Jun Mimuro ◽  
Tsuyoshi Ogura ◽  
Takashi Okada ◽  
Masashi Urabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document