Sample Preparation Protocols for Protein Abundance, Acetylome, and Phosphoproteome Profiling of Plant Tissues

Author(s):  
Gaoyuan Song ◽  
Maxwell R. McReynolds ◽  
Justin W. Walley
2008 ◽  
Vol 39 (13-14) ◽  
pp. 2046-2052 ◽  
Author(s):  
Prashant Srivastava ◽  
Prakash C. Srivastava ◽  
Upasana Srivastava ◽  
Uma S. Singh

2019 ◽  
Author(s):  
Lindsay K Pino ◽  
Han-Yin Yang ◽  
William Stafford Noble ◽  
Brian C Searle ◽  
Andrew N Hoofnagle ◽  
...  

AbstractMass spectrometry is a powerful tool for quantifying protein abundance in complex samples. Advances in sample preparation and the development of data independent acquisition (DIA) mass spectrometry approaches have increased the number of peptides and proteins measured per sample. Here we present a series of experiments demonstrating how to assess whether a peptide measurement is quantitative by mass spectrometry. Our results demonstrate that increasing the number of detected peptides in a proteomics experiment does not necessarily result in increased numbers of peptides that can be measured quantitatively.


2010 ◽  
Vol 3 ◽  
pp. PRI.S5882 ◽  
Author(s):  
Claire Mulvey ◽  
Bettina Thur ◽  
Mark Crawford ◽  
Jasminka Godovac-Zimmermann

Current bottom-up quantitative proteomics methods based on MS/MS sequencing of peptides are shown to be strongly dependent on sample preparation. Using cytosolic proteins from MCF-7 breast cancer cells, it is shown that protein pre-fractionation based on pI and MW is more effective than pre-fractionation using only MW in increasing the number of observed proteins (947 vs. 704 proteins) and the number of spectral counts per protein. Combination of MS data from the different pre-fractionation methods results in further improvements (1238 proteins). We discuss that at present the main limitation on quantitation by MS/MS sequencing is not MS sensitivity and protein abundance, but rather extensive peptide overlap and limited MS/MS sequencing throughput, and that this favors internally calibrated methods such as SILAC, ICAT or ITRAQ over spectral counting methods in attempts to drastically improve proteome coverage of biological samples.


2016 ◽  
Vol 7 ◽  
Author(s):  
Yonghui Dong ◽  
Bin Li ◽  
Sergey Malitsky ◽  
Ilana Rogachev ◽  
Asaph Aharoni ◽  
...  

Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Author(s):  
Earl R. Walter ◽  
Glen H. Bryant

With the development of soft, film forming latexes for use in paints and other coatings applications, it became desirable to develop new methods of sample preparation for latex particle size distribution studies with the electron microscope. Conventional latex sample preparation techniques were inadequate due to the pronounced tendency of these new soft latex particles to distort, flatten and fuse on the substrate when they dried. In order to avoid these complications and obtain electron micrographs of undistorted latex particles of soft resins, a freeze-dry, cold shadowing technique was developed. The method has now been used in our laboratory on a routine basis for several years.The cold shadowing is done in a specially constructed vacuum system, having a conventional mechanical fore pump and oil diffusion pump supplying vacuum. The system incorporates bellows type high vacuum valves to permit a prepump cycle and opening of the shadowing chamber without shutting down the oil diffusion pump. A baffeled sorption trap isolates the shadowing chamber from the pumps.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Sign in / Sign up

Export Citation Format

Share Document