Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain Delivery of Peptides

Author(s):  
Muge Yemisci ◽  
Secil Caban ◽  
Eduardo Fernandez-Megia ◽  
Yilmaz Capan ◽  
Patrick Couvreur ◽  
...  
2019 ◽  
Vol 38 (2) ◽  
pp. 385 ◽  
Author(s):  
Marwa M. El-Naggar ◽  
Wael S. I. Abou-Elmagd ◽  
Ashraf Suloma ◽  
Hamza A. El-Shabaka ◽  
Magdy T. Khalil ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 216 ◽  
Author(s):  
Viviana Triaca ◽  
Elena Fico ◽  
Valentina Sposato ◽  
Silvia Caioli ◽  
Maria Teresa Ciotti ◽  
...  

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


Author(s):  
Fatmanur Tuğcu-Demiröz ◽  
Sinem Saar ◽  
Adnan Altuğ Kara ◽  
Ayşegül Yıldız ◽  
Emre Tunçel ◽  
...  

2013 ◽  
Vol 61 ◽  
pp. 189-195 ◽  
Author(s):  
Manoj Kumar ◽  
Ravi Shankar Pandey ◽  
Kartik Chandra Patra ◽  
Sunil Kumar Jain ◽  
Muarai Lal Soni ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1375
Author(s):  
María J. Moreno-Vásquez ◽  
Maribel Plascencia-Jatomea ◽  
Saúl Sánchez-Valdes ◽  
Judith C. Tanori-Córdova ◽  
Francisco J. Castillo-Yañez ◽  
...  

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 μg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 μg/mL) was lower than Chitosan-P (31.2 μg/mL) and EGCG (500 μg/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document