neurotrophic activity
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 33)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Samar M. Shawki ◽  
Mohammed A. Saad ◽  
Rania M. Rahmo ◽  
Walaa Wadie ◽  
Hanan S. El-Abhar

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, psychiatric, and cognitive abnormalities. The antidiabetic drug liraglutide possesses a neuroprotective potential against several neurodegenerative disorders; however, its role in Huntington’s disease (HD) and the possible mechanisms/trajectories remain elusive, which is the aim of this work. Liraglutide (200 μg/kg, s.c) was administered to rats intoxicated with 3-nitropropionic acid (3-NP) for 4 weeks post HD model induction. Liraglutide abated the 3-NP-induced neurobehavioral deficits (open field and elevated plus maze tests) and histopathological changes. Liraglutide downregulated the striatal mRNA expression of HSP 27, PBR, and GFAP, while it upregulated that of DARPP32. On the molecular level, liraglutide enhanced striatal miR-130a gene expression and TrKB protein expression and its ligand BDNF, while it reduced the striatal protein content and mRNA expression of the death receptors sortilin and p75NTR, respectively. It enhanced the neuroprotective molecules cAMP, p-PI3K, p-Akt, and p-CREB, besides modulating the p-GSK-3β/p-β-catenin axis. Liraglutide enhanced the antioxidant transcription factor Nrf2, abrogated TBARS, upregulated both Bcl2 and Bcl-XL, and downregulated Bax along with decreasing caspase-3 activity. Therefore, liraglutide exerts a neurotherapeutic effect on 3-NP-treated rats that is, besides the upturn of behavioral and structural findings, it at least partially, increased miR-130a and modulated PI3K/Akt/CREB/BDNF/TrKB, sortilin, and p75NTR, and Akt/GSK-3β/p-β-catenin trajectories besides its capacity to decrease apoptosis and oxidative stress, as well as its neurotrophic activity.


2021 ◽  
Author(s):  
Yu Wang ◽  
Feng Jia ◽  
Yong Lin

Abstract Several transport vectors, including nanoparticles, have been reported to be used for the delivery of therapeutic medicines crossing the impermeable blood-brain barrier (BBB) to treat the diseases in the central nerve system (CNS), such as traumatic brain injury (TBI). Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles, made from biocompatible material, are regarded as a better potential delivery tool than others such as gold nanoparticles due to their degradability in vivo. However, little is known whether PBCA nanoparticles can be used to deliver neurotrophic factors into the brain to treat TBI. In this study, we first synthesized PBCA-carried β-nerve growth factor, a neurotrophic agent with a large molecular weight, and then intravenously injected the compound into TBI rats. We found that despite undergoing several synthesis steps and host circulation, β-NGF was able to be successfully delivered into the injured brain by PBCA nanoparticles, still maintain its neurotrophic activity for neurite outgrowth, and could reduce the mortality of TBI rats. Our findings indicate that PBCA nanoparticles, with Tween 80, are an efficient delivery vector and a protective reservoir for large molecular therapeutic agents to treat TBI intravenously.


2021 ◽  
Vol 192 ◽  
pp. 112962
Author(s):  
Tae Hyun Lee ◽  
Lalita Subedi ◽  
Young Jun Ha ◽  
Gyuri Moon ◽  
Sun Yeou Kim ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Anja Pišlar ◽  
Janko Kos

Abstract Background Neurotrophins can activate multiple signalling pathways in neuronal cells through binding to their cognate receptors, leading to neurotrophic processes such as cell survival and differentiation. γ-Enolase has been shown to have a neurotrophic activity that depends on its translocation towards the plasma membrane by the scaffold protein γ1-syntrophin. The association of γ-enolase with its membrane receptor or other binding partners at the plasma membrane remains unknown. Methods In the present study, we used immunoprecipitation and immunofluorescence to show that γ-enolase associates with the intracellular domain of the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors at the plasma membrane of differentiated SH-SY5Y cells. Results In differentiated SH-SY5Y cells with reduced expression of γ1-syntrophin, the association of γ-enolase with the Trk receptor was diminished due to impaired translocation of γ-enolase towards the plasma membrane or impaired Trk activity. Treatment of differentiated SH-SY5Y cells with a γ-Eno peptide that mimics γ-enolase neurotrophic activity promoted Trk receptor internalisation and endosomal trafficking, as defined by reduced levels of Trk in clathrin-coated vesicles and increased levels in late endosomes. In this way, γ-enolase triggers Rap1 activation, which is required for neurotrophic activity of γ-enolase. Additionally, the inhibition of Trk kinase activity by K252a revealed that increased SH-SY5Y cell survival and neurite outgrowth mediated by the γ-Eno peptide through activation of signalling cascade depends on Trk kinase activity. Conclusions These data therefore establish the Trk receptor as a binding partner of γ-enolase, whereby Trk endosomal trafficking is promoted by γ-Eno peptide to mediate its neurotrophic signalling. Graphical Abstract


2021 ◽  
Author(s):  
Khyati Gohil ◽  
M. Zain Kazmi ◽  
Florence Williams

Neurotrophic small molecule natural products are functional analogs of signaling proteins called neurotrophins, which cause a pro-growth, pro-survival, or pro-differentiation response in neuronal cells. While these phenotypic responses are desirable to combat neurodegenerative disease progression, the pharmacokinetic properties of neurotrophins present challenges to their administration. Therefore, neurotrophic small molecules such as the cis- and trans-banglenes offer attractive alternatives. We describe the synthesis and testing of banglene derivatives and establish a structure-activity response for the banglene family. We demonstrate that (–) trans-banglene is the primarily active enantiomer, and that select modifications on the cyclohexene ring of trans-banglene do not significantly impair its bioactivity. Finally, we demonstrate that (–) trans-banglene potentiation of NGF induced neuritogenesis is unaffected by the presence of these Erk1/2, Akt and Pkc inhibitors. Our structure-activity results also suggest that (–) trans-banglene neurotrophic activity and its potentiation of NGF activity might be distinct unassociated processes.


2021 ◽  
Author(s):  
Khyati Gohil ◽  
M. Zain Kazmi ◽  
Florence Williams

Neurotrophic small molecule natural products are functional analogs of signaling proteins called neurotrophins, which cause a pro-growth, pro-survival, or pro-differentiation response in neuronal cells. While these phenotypic responses are desirable to combat neurodegenerative disease progression, the pharmacokinetic properties of neurotrophins present challenges to their administration. Therefore, neurotrophic small molecules such as the cis- and trans-banglenes offer attractive alternatives. We describe the synthesis and testing of banglene derivatives and establish a structure-activity response for the banglene family. We demonstrate that (–) trans-banglene is the primarily active enantiomer, and that select modifications on the cyclohexene ring of trans-banglene do not significantly impair its bioactivity. Finally, we demonstrate that (–) trans-banglene potentiation of NGF induced neuritogenesis is unaffected by the presence of these Erk1/2, Akt and Pkc inhibitors. Our structure-activity results also suggest that (–) trans-banglene neurotrophic activity and its potentiation of NGF activity might be distinct unassociated processes.


Author(s):  
Reni Ajoy ◽  
Yu-Chun Lo ◽  
Man-Hau Ho ◽  
You-Yin Chen ◽  
Yun Wang ◽  
...  

AbstractGlucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine––CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.


2021 ◽  
Author(s):  
Benjamin S. Weeks ◽  
Samuel D. Weeks ◽  
Amanda Kim ◽  
Landon Kessler ◽  
Pedro P. Perez

Diet impacts anxiety in two main ways. First anxiety can be caused by deficiencies in antioxidants, neurotransmitter precursors, amino acids, cations and vitamins and other cofactors. Second, anxiety can be reduced by anxiolytic nutraceuticals which are food molecules that bind to molecular targets of the amygdala and the hypothalamus-pituitary–adrenal axis (HPA-axis). Anxiety is a feeling of fear that arises from a perceived threat and can be a beneficial coping mechanism to threats and stressors. However excessive anxiety is a disorder that interferes with healthy responses to stressors. The amygdala is responsible for assigning value to a threat or stressor and triggering the HPA-axis to support the body wide system responses to the threat. The amygdala also communicates with the neuroplastic learning and memory centers of the hippocampus to fix or set a learned value to the threat. Interestingly, many anxiolytic nutraceuticals that show benefits in human clinical trials have neurotrophic activity and increase neuronal plasticity. Moreover, anxiolytic nutraceuticals either act like the neurotrophins, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF and neurotrophin-3 (NT3) by either directly binding to or potentiating the tyrosine receptor kinase (TRK) family of receptors (TRKA, TRKB and TRKC) and activating the ERK1/2 signal transduction pathway associated with neurite outgrowth and neural plasticity. This chapter will explore the neuritogenic activity of clinically proven plant-based anxiolytic nutraceuticals and examine the commonality of TRKA-C receptors and the ERK1/2 signaling pathway in the pharmacological and nutraceutical treatment of anxiety disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. F. Zainullina ◽  
Yu. V. Vakhitova ◽  
A. Yu. Lusta ◽  
T. A. Gudasheva ◽  
S. B. Seredenin

AbstractBrain-derived neurotrophic factor (BDNF) is involved in the regulation of neuronal cell growth, differentiation, neuroprotection and synaptic plasticity. Although aberrant BDNF/TrkB signaling is implicated in several neurological, neurodegenerative and psychiatric disorders, neurotrophin-based therapy is challenging and is limited by improper pharmacokinetic properties of BDNF. Dimeric dipeptide compound GSB-106 (bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide) has earlier been designed to mimic the TrkB-interaction 4 loop of BDNF. It displayed protective effect in various cell-damaging models in vitro. Animal studies uncovered antidepressive and neuroprotective properties upon GSB-106 per os administration. Current study shows that GSB-106 acts similarly to BDNF, promoting survival of serum-deprived neuronal-like SH-SY5Y cells. 100 nmol concentration of GSB-106 provided maximum neurotrophic effect, which corresponds to about 37% of the maximum effect provided by BDNF. Protective properties of GSB-106 arise from its ability to counteract cell apoptosis via activation of TrkB-dependent pro-survival mechanisms, including inactivation of pro-apoptotic BAD protein and suppression of caspases 9 and 3/7. Thus, our study has characterized neurotrophic activity of small dimeric compound GSB-106, which mimics certain biological functions of BDNF and neurotrophin-specific protective mechanisms. GSB-106 also displays similarities to some known low weight peptide and non-peptide TrkB ligands.


2021 ◽  
Author(s):  
Junxing Jiang ◽  
Weiyi Liu ◽  
Jitao Hai ◽  
Yan Luo ◽  
Keqi Chen ◽  
...  

AbstractDifferentiation and proliferation of neural stem cells (NSCs) are both important biological processes in cerebral neural network. However, these two capacities of NSCs are limited. Thus, the induction of differentiation and/or proliferation via administration of small molecules derived from natural plants can be considered as a potential approach to repair damaged neural networks. This paper reports that gallic acid, a catechol compound selected from derivatives of methyl 3,4- dihydroxybenzoate (MDHB), selectively induces NSCs to differentiate into immature neurons and promotes proliferation by activating phosphorylation of key proteins in the MAPK-ERK pathway. In addition, we found that 3,4-dihydroxybenzoic acid was the main active structure which could show neurotrophic activity. The substitution of carboxyl group on the benzene ring into ester group may promote differentiation on the basis of the structure of 3,4-dihydroxybenzoic acid. Meanwhile, the introduction of 5-hydroxyl group may promote proliferation. Generally, this study identified a natural catechol compound that promotes differentiation and proliferation of NSCs in vitro.


Sign in / Sign up

Export Citation Format

Share Document