Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis

Author(s):  
Surendra K. Shukla ◽  
Scott E. Mulder ◽  
Pankaj K. Singh
Diabetes ◽  
1993 ◽  
Vol 42 (7) ◽  
pp. 956-965 ◽  
Author(s):  
B. A. Zinker ◽  
D. B. Lacy ◽  
D. Bracy ◽  
J. Jacobs ◽  
D. H. Wasserman

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102759 ◽  
Author(s):  
Hanumantharayappa Bharathkumar ◽  
Mahalingam S. Sundaram ◽  
Swamy Jagadish ◽  
Shardul Paricharak ◽  
Mahadevappa Hemshekhar ◽  
...  
Keyword(s):  

1986 ◽  
Vol 240 (2) ◽  
pp. 395-401 ◽  
Author(s):  
R A Challiss ◽  
D J Hayes ◽  
G K Radda

Muscle bloodflow and the rate of glucose uptake and phosphorylation were measured in vivo in rats 7 days after unilateral femoral artery ligation and section. Bloodflow was determined by using radiolabelled microspheres. At rest, bloodflow to the gastrocnemius, plantaris and soleus muscles of the ligated limb was similar to their respective mean contralateral control values; however, bilateral sciatic nerve stimulation at 1 Hz caused a less pronounced hyperaemic response in the muscles of the ligated limb, being 59, 63 and 49% of their mean control values in the gastrocnemius, plantaris and soleus muscles respectively. The rate of glucose utilization was determined by using the 2-deoxy[3H]glucose method [Ferré, Leturque, Burnol, Penicaud & Girard (1985) Biochem. J. 228, 103-110]. At rest, the rate of glucose uptake and phosphorylation was statistically significantly increased in the gastrocnemius and soleus muscles of the ligated limb, being 126 and 140% of the mean control values respectively. Bilateral sciatic nerve stimulation at 1 Hz caused a 3-5-fold increase in the rate of glucose utilization by the ligated and contralateral control limbs; furthermore, the rate of glucose utilization was significantly increased in the muscles of the ligated limb, being 140, 129 and 207% of their mean control values respectively. For the range of bloodflow to normally perfused skeletal muscle at rest or during isometric contraction determined in the present study, a linear correlation between the rate of glucose utilization and bloodflow can be demonstrated. Applying similar methods of regression analysis to glucose utilization and bloodflow to muscles of the ligated limb reveals a similar linear correlation. However, the rate of glucose utilization at a given bloodflow is increased in muscles of the ligated limb, indicating an adaptation of skeletal muscle to hypoperfusion.


2008 ◽  
Vol 28 (18) ◽  
pp. 5634-5645 ◽  
Author(s):  
Francesco Oriente ◽  
Luis Cesar Fernandez Diaz ◽  
Claudia Miele ◽  
Salvatore Iovino ◽  
Silvia Mori ◽  
...  

ABSTRACT We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1 i / i ) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1 i / i muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1α, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1 i / i mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway.


2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


2018 ◽  
Vol 51 (1) ◽  
pp. 154-172 ◽  
Author(s):  
Fenglin Zhang ◽  
Jingjing Ye ◽  
Yingying Meng ◽  
Wei Ai ◽  
Han Su ◽  
...  

Background/Aims: It has been implicated that calcium supplementation is involved in reducing body weight/fat and improving glucose homeostasis. However, the underlying mechanisms are still not fully understood. Here, we investigated the effects of calcium supplementation on adipogenesis and glucose homeostasis in porcine bone marrow mesenchymal stem cells (pBMSCs) and high fat diet (HFD)-fed mice and explored the involved signaling pathways. Methods: In vitro, pBMSCs were treated with 4 mM extracellular calcium ([Ca2+]o) and/or 1 μM nifedipine, 0.1 μM BAPTA-AM, 1 μM KN-93, 50 nM wortmannin for 10 days. The intracellular calcium ([Ca2+]i) levels were measured using Fluo 3-AM by flow cytometry. The adipogenic differentiation of pBMSCs was determined by Oil Red-O staining and triglyceride assay. The expression of marker genes involved in adipogenesis (peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)) and glucose uptake (glucose transporter 4 (GLUT4)), as well as the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and PI3K/Akt-FoxO1/AS160 signaling pathways were determined by Western blotting. Glucose uptake and utilization were examined using 2-NBDG assay and glucose content assay, respectively. In vivo, C57BL/6J male mice were fed a HFD (containing 1.2% calcium) without or with 0.6% (w/w) calcium chloride in drinking water for 13 weeks. The adipogenesis, glucose homeostasis and the involvement of CaMKII and PI3K/Akt signaling pathway were also assessed. Results: In vitro, [Ca2+]o stimulated pBMSCs adipogenesis by increasing [Ca2+]i level and activating CaMKII and PI3K/Akt-FoxO1 pathways. In addition, [Ca2+]o promoted glucose uptake/utilization by enhancing AS160 phosphorylation, GLUT4 expression and translocation. However, the stimulating effects of [Ca2+]o on pBMSCs adipogenesis and glucose uptake/utilization were abolished by L-VGCC blocker Nifedipine, [Ca2+]i chelator BAPTA-AM, CaMKII inhibitor KN-93, or PI3K inhibitor Wortmannin. In vivo, calcium supplementation decreased body weight and fat content, increased adipocyte number, and improved glucose homeostasis, with elevated PPARγ and GLUT4 expression and PI3K/Akt activation in iWAT. Conclusion: calcium supplementation enhanced adipogenesis and glucose uptake in pBMSCs, which was coincident with the increased adipocyte number and improved glucose homeostasis in HFD-fed mice, and was associated with activation of CaMKII and PI3K/Akt-FoxO1/AS160 pathways. These data provided a broader understanding of the mechanisms underlying calcium-induced body weight/fat loss and glycemic control.


Sign in / Sign up

Export Citation Format

Share Document