Early Stage Discovery and Validation of Pharmacological Chaperones for the Correction of Protein Misfolding Diseases

Author(s):  
Oscar Aubi ◽  
Per M. Knappskog ◽  
Aurora Martinez
2021 ◽  
Author(s):  
Eli Fritz McDonald ◽  
Carleen Mae P. Sabusap ◽  
Minsoo Kim ◽  
Lars Plate

ABSTRACTPharmacological chaperones represent a class of therapeutic compounds for treating protein misfolding diseases. One of the most prominent examples is the FDA-approved pharmacological chaperone lumacaftor (VX-809), which has transformed cystic fibrosis (CF) therapy. CF is a fatal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). VX-809 corrects folding of F508del CFTR, the most common patient mutation, yet F508del exhibits only mild VX-809 response. In contrast, rarer mutations P67L and L206W are hyper-responsive to VX-809, while G85E is non-responsive. Despite the clinical success of VX-809, the mechanistic origin for the distinct susceptibility of mutants remains unclear. Here, we use interactomics to characterize the impact of VX-809 on proteostasis interactions of P67L and L206W and compare these to F508del and G85E. We determine hyper-responsive mutations P67L and L206W exhibit decreased interactions with proteasomal, and autophagy degradation machinery compared to F508del and G85E. We then show inhibiting the proteasome attenuates P67L and L206W VX-809 response, and inhibiting the lysosome attenuates F508del VX-809 response. Our data suggests a previously unidentified but required role for protein degradation in VX-809 correction. Furthermore, we present an approach for identifying proteostasis characteristics of mutant-specific therapeutic response to pharmacological chaperones.


2021 ◽  
Vol 142 ◽  
pp. 111964
Author(s):  
M.B. Divakara ◽  
R. Ashwini ◽  
M.S. Santosh ◽  
M. Priyanka ◽  
C.R. Ravikumar ◽  
...  

ChemMedChem ◽  
2021 ◽  
Author(s):  
Richa Sharma ◽  
Tulika Srivastava ◽  
Alka Raj Pandey ◽  
Tripti Mishra ◽  
Bhagyashri Gupta ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Johnny Habchi ◽  
Sean Chia ◽  
Robert I. Horne ◽  
Michele Vendruscolo ◽  
...  

AbstractSignificant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases.


2018 ◽  
Vol 115 (41) ◽  
pp. 10245-10250 ◽  
Author(s):  
Sean Chia ◽  
Johnny Habchi ◽  
Thomas C. T. Michaels ◽  
Samuel I. A. Cohen ◽  
Sara Linse ◽  
...  

To develop effective therapeutic strategies for protein misfolding diseases, a promising route is to identify compounds that inhibit the formation of protein oligomers. To achieve this goal, we report a structure−activity relationship (SAR) approach based on chemical kinetics to estimate quantitatively how small molecules modify the reactive flux toward oligomers. We use this estimate to derive chemical rules in the case of the amyloid beta peptide (Aβ), which we then exploit to optimize starting compounds to curtail Aβ oligomer formation. We demonstrate this approach by converting an inactive rhodanine compound into an effective inhibitor of Aβ oligomer formation by generating chemical derivatives in a systematic manner. These results provide an initial demonstration of the potential of drug discovery strategies based on targeting directly the production of protein oligomers.


Sign in / Sign up

Export Citation Format

Share Document