Quantification of In Vitro Protein Lysine Acetylation by Reversed Phase HPLC

Author(s):  
Catherine W. Njeri ◽  
Onyekachi E. Ononye ◽  
Lata Balakrishnan
Peptides ◽  
1984 ◽  
Vol 5 (6) ◽  
pp. 1037-1042 ◽  
Author(s):  
Thomas P. Davis ◽  
Hans Schoemaker ◽  
Alison J. Culling-Berglund

Author(s):  
Jinal Patel ◽  
Padamnabhi Shanker Nagar ◽  
Kalpana Pal ◽  
Raghuraj Singh ◽  
Tushar Dhanani ◽  
...  

Abstract Background Phyllanthus species exhibit a wide range of in vitro and in vivo pharmacological activities; however, little is known about the compounds present in the extracts that are responsible for such actions. Objective Development and validation of a simple reversed phase HPLC-PDA method for profiling of phyllanthin, hypophyllanthin, nirtetralin, and niranthin in extracts of Phyllanthus species was carried out. Methods Separation was achieved using an XBridge column® (150 × 4.6 mm, 5.0 µm id) in an isocratic elution mode with mobile phase comprising of a mixture of acetonitrile and water with TFA (0.05%, v/v, pH = 2.15) at ambient temperature with a flow rate of 1 mL/min. Results Phyllanthin, hypophyllanthin, nirtetralin, and niranthin were eluted at mean retention times of 10.47, 11.10, 13.67, and 14.53 min, respectively. LOD and LOQ for all four analytes were 0.75 and 3.00 μg/mL, respectively. RSDr values for intraday and interday precision for phyllanthin, hypophyllanthin, nirtetralin, and niranthin were 0.38–1.32 and 0.45–1.77%; 0.22–3.69 and 0.24–3.04%, 0.73–2.37 and 0.09–0.31%, and 1.56–2.77 and 0.12–0.68%, respectively. Conclusions The developed and validated HPLC-PDA method was applied for identification and quantification of phyllanthin, hypophyllanthin, nirtetralin, and niranthin in extracts of different plant parts of selected Phyllanthus species. The outcome of the present investigation could be useful for selection of best species to promote its commercial cultivation and suitable extraction solvent for preparation of lignan-enriched fractions. This HPLC-PDA method could be useful for quality control of herbal formulations containing plants from Phyllanthus species.


1993 ◽  
Vol 9 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Juergen Fuchs ◽  
Jiri Mlcoch ◽  
Franz Oesch ◽  
Karl Ludwig Platt

Two highly polar DNA adducts were found after metabolic activation of 3,4,10,11-tetrahydroxy-3,4,10,11-tetrahydrodibenz[ a,h]anthracene(DBA-3,4;10, 11-bisdiol) by liver microsomes isolated from male Sprague-Dawley rats pretreated with Aroclor 1254 in presence of calf thymus DNA. These DNA adducts could be assigned to the metabolites of dibenz[ a,h]anthracene (DBA), of 3R,4R,10R,11R-tetrahydroxy-3,4,10,11-tetrahydro-DBA and of 3R,4R,10S,US-tetrahydroxy-3,4,10,11-tetrahydro-DBA. DNA adducts derived from metabolites of 3S,4S,10S,11S-tetrahydroxy-3,4,10,11-tetrahydro-DBA were not found. These highly polar adducts also could be detected by reversed phase HPLC after incubation of dibenz[ a,h]anthracene, 3R,4R-dihydroxy-3,4-dihydro-DBA ((-)-DBA-3,4-diol) and 3S,4S- dihydroxy-3,4-dihydro-DBA ((+)-DBA-3,4-diol) with DNA in presence of the activating system. After incubation of 14C labelled DBA DNA adducts derived from DBA-3,4;10,11-bisdiol were found in a fraction of 38% and bay region 3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydro-DBA-DNA adducts at a level of 25%. DBA-3,4; 10,11-bisdiol exhibited a higher DNA binding yield (38 × 12 pmollmg DNA) than (-)-DBA-3,4-diol (23 × 6 pmol/mg DNA), the most mutagenic 3,4-diol enantiomer. For (+)-DBA-3,4-diol the highly polar DNA adducts derived from DBA-3,4;10,11-bisdiol were by far the most predotmnant adducts in vitro.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 85.2-85
Author(s):  
C. Daien ◽  
J. Tan ◽  
R. Audo ◽  
J. Mielle ◽  
L. Macia

Background:Regulatory B cells (Bregs) are defective in many auto-immune diseases, i.e. rheumatoid arthritis (RA). The short-chain fatty acid (SCFA) acetate, derived mostly from gut microbial fermentation of dietary fiber, promotes anti-inflammatory regulatory T cells and protects mice from type 1 diabetes and colitis. We hypothesized that acetate could be a good candidate to promote Bregs in auto-immune diseases.Objectives:To assess the effect of acetate on Breg number and function,in vitroandin vivoin mice and humans.Methods:Bregs were defined as IL-10 producing regulatory B cells (B10 cells). Their number was assessed after overnight exposure to acetate (Ac 10 mM) and 4 hours of CpG, ionomycin and PMA in mice and after 24 hours of acetate +/- CpG and 4 hours of ionomycin and PMA in humans. Acetate was given to mice either intraperitoneally (twice at a 12-hour interval) or in drinking water for 3 weeks. Acetate-treated B cells were transferred to mice with collagen-antibody -induced arthritis to assess their function. To decipher the mechanisms behind the effect of acetate, we used inhibitors of GPR43 (CATPB), ATP synthase (oligomycin), glycolysis (2-DG), ACSS2 and ACLY and assessed protein lysine acetylation by flow cytometry on human B cells. Acetate and B10 cells were also assessed before and after a 7-day high-fibre diet in 12 healthy volunteers.Results:In mice, acetate promoted B10 cell differentiation bothin vitro(medians [IQR] 3.1 [0.4-3.7] and 9.9 [5.9-17.6]% of B for CpG and CpG+Ac respectively, p=0.002) andin vivowhen intraperitoneal injected(22 [14-29] and 31 [25-37]% of B for PBS and acetate respectively,p=0.03) or added to drinking water (17 [6-25] and 39 [26-40]% of B for water or acetate respectively, p=0.02). Adoptive transfer of acetate-treated B cells protected mice from arthritis compared to non-exposed B cells (ANOVA p=0.008). Acetate also promoted B10 cells from human blood cells (2.5 [1.6-2.7] and 3.4 [2.6-4.5] for unstimulated [Un] and Ac respectively, p=0.0001). Conversely to CpG, acetate specifically promoted IL-10, with no impact or a decrease of proinflammatory cytokines (IL-6: 17 [5-29]; 12 [3-21] and 40 [20-47]% B cells for Un, Ac and CpG respectively, p<0.01 for all comparisons and TNF-a: 48 [29-61]; 41 [28-67] and 69 [64-78]% B cells for Un, Ac and CpG respectively, p<0.01 for CpG vs Un or Ac, NS for acetate vs Un). Inhibition of GPR43 and ACLY did not impact acetate response, while inhibition of glycolysis significantly decreased its effect. Blockade of ACSS2, converting acetate into acetyl-CoA, decreased acetate-induced B10 cells. Acetate was associated with an increase of protein lysine acetylation which was not observed in presence of CpG alone, suggesting a different mechanism of action (2.0 [1.3-3.4]; 3.3 [2.4-5.4] and 1.4 [0.5-1.7]% B cells for Un, Ac and CpG respectively, p=0.002 for Un vs Ac, NS with CpG). Conversion of acetate into acetyl-CoA could thus be used for the acetylation of cytoplasmic protein, a post-translational modification that regulates key cellular processes, including energy metabolism. In addition, B10 cells had significantly more lysine-acetylated proteins than IL-10negB cells or TNF+B cells (5.3[3.9-7.3]; 3.2 [2.4-5.4] and 3.9 [2.7-6.2] % of B for B10, IL-10negB cells or TNF+B cells respectively, p<0.01 for all comparisons). Finally, dietary fiber supplementation in healthy individuals was associated with increased acetate and B10 cells in the blood, which were significantly correlated (R2=0.20, p=0.02).Conclusion:Our results suggest that acetate induces functional Bregs, through its conversion into acetyl-CoA, used for cell metabolism and protein acetylation. Delivery of acetate or acetate producing diets or bacteria might be a promising approach to restore Bregs in non-communicable diseases such as RA in which they are defective.Disclosure of Interests:Claire DAIEN Grant/research support from: from Pfizer, Abbvie, Roche-Chugaï, Novartis, Abivax, Sandoz, Consultant of: Abbvie, Abivax, BMS, MSD, Roche-Chugaï, Lilly, Novartis, Speakers bureau: Abbvie, Abivax, BMS, MSD, Roche-Chugaï, Lilly, Novartis, Jian Tan: None declared, Rachel Audo: None declared, Julie Mielle: None declared, Laurence Macia: None declared


2021 ◽  
Vol 1 (11) ◽  
Author(s):  
Leonie G. Graf ◽  
Robert Vogt ◽  
Anna‐Theresa Blasl ◽  
Chuan Qin ◽  
Sabrina Schulze ◽  
...  

Peptides ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 247-251 ◽  
Author(s):  
S. Scalia ◽  
S. Salvadori ◽  
M. Marastoni ◽  
F. Bortolotti ◽  
R. Tomatis

2001 ◽  
Vol 355 (2) ◽  
pp. 449-457 ◽  
Author(s):  
Corinne M. SPICKETT ◽  
Nicola RENNIE ◽  
Helen WINTER ◽  
Laura ZAMBONIN ◽  
Laura LANDI ◽  
...  

Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.


2000 ◽  
Vol 67 (2) ◽  
pp. 261-271 ◽  
Author(s):  
FLORENCE VALENCE ◽  
STÉPHANIE-MARIE DEUTSCH ◽  
ROMAIN RICHOUX ◽  
VALÉRIE GAGNAIRE ◽  
SYLVIE LORTAL

Intracellular peptidases of Lactobacillus helveticus may play a major role in the proteolysis of Swiss cheeses, provided that they are released through bacterial lysis. Experimental Swiss cheeses were manufactured on a small scale from thermized and microfiltered milk using as starters (in addition to Streptococcus thermophilus and Propionibacterium freudenreichii) one of two Lb. helveticus strains, ITGLH1 and ITGLH77, which undergo lysis to different extents in vitro. All the cheeses were biochemically identical after pressing. The viability of Lb. helveticus ITGLH1 and ITGLH77 decreased to a similar extent (96–98%) while in the cold room, but the concomitant release of intracellular lactate dehydrogenase in cheeses made with strain ITGLH1 was 5–7-fold that in cheeses made with ITGLH77. Protein profiles and immunoblot detection of the dipeptidase PepD confirmed a greater degree of lysis of the ITGLH1 strain. Free active peptidases were detected in aqueous extracts of cheese for both strains, and proteolysis occurred principally in the warm room. Reversed-phase HPLC revealed a more extensive peptide hydrolysis for ITGLH1, which was confirmed by the greater release of free NH2 groups (+33%) and free amino acids (+75%) compared with ITGLH77. As the intracellular peptidase activities of ITGLH1 and ITGLH77 have previously been shown to be similar, our results indicated that the extent of lysis of Lb. helveticus could have a direct impact on the degree of proteolysis in Swiss cheeses.


Author(s):  
Nadine Pelletier ◽  
Serge Grégoire ◽  
Xiang‐Jiao Yang

1998 ◽  
Vol 44 (3) ◽  
pp. 532-538 ◽  
Author(s):  
Marc J M Nickmilder ◽  
Dominique Latinne ◽  
Jean-Paul De Houx ◽  
Roger K Verbeeck ◽  
Georges J J Lhoëst

Abstract We studied in vitro metabolism of rapamycin using pig liver microsomes. After extraction of the metabolites from the incubation medium, the crude metabolite extract was submitted to normal and subsequently to reversed-phase HPLC chromatography. We describe in the current study a metabolite of retention time 23.2 min collected from reversed-phase HPLC and identified by fast atom bombardment mass spectrometry (MS) and electrospray MS-MS as a C39 demethylated rapamycin metabolite. In vitro immunosuppressive activity of this metabolite, determined by the mixed lymphocyte reaction, was negligible compared with that of the parent compound. The decrease of in vitro immunosuppressive activity compared with the parent compound is likely to be attributed to important structural modifications of the rapamycin binding region to the FK-506 binding protein.


Sign in / Sign up

Export Citation Format

Share Document