scholarly journals Visualization of the Expression of HMGN Nucleosomal Binding Proteins in the Developing Mouse Embryo and in Adult Mouse Tissues

Author(s):  
Takashi Furusawa ◽  
Michael Bustin
1993 ◽  
Vol 41 (8) ◽  
pp. 1163-1169 ◽  
Author(s):  
G Ocklind ◽  
J Talts ◽  
R Fässler ◽  
A Mattsson ◽  
P Ekblom

The extracellular matrix (ECM) is essential in regulating many cell functions in non-lymphoid cells, and the ECM may also play a role in the function of the immune system. Tenascin is a hexameric glycoprotein of the ECM. In mouse, two major polypeptides of MW 210 KD and 260 KD are formed by differential splicing. Northern blot screening of various mouse tissues showed that the short 6 KB tenascin message was strongly expressed in the adult thymus, whereas very little or no tenascin mRNA could be detected in spleen. In addition, immunoblotting and histological analysis with monoclonal anti-tenascin antibodies revealed the presence of tenascin in lymph nodes and spleen. In thymus, only a short-splice variant of tenascin was detected by immunoblotting, which supported the Northern blot results. Immunohistology showed that the epithelial reticular stroma in both embryonic and adult mouse thymus expressed tenascin, as did the postnatal mesenchymal reticular stroma in lymph nodes and spleen. The distribution of tenascin in the thymus was more restricted than that of fibronectin and laminin.


1985 ◽  
Vol 161 (3) ◽  
pp. 475-489 ◽  
Author(s):  
S H Lee ◽  
P M Starkey ◽  
S Gordon

We have estimated the macrophage content of different tissues of the normal adult mouse using F4/80, a highly specific antigen marker for mature mouse macrophages. An absorption indirect binding assay was used to quantitate F4/80 antigen against a calibration standard made from the J774.2 macrophage-like cell line. The richest sources of tissue F4/80 antigen were found to be bone marrow, spleen, cervical and mesenteric lymph nodes, large bowel, liver, kidneys, and small bowel. The organs that have the highest total F4/80 antigen content are the liver, large bowel, small bowel, bone marrow, spleen, cervical and mesenteric lymph nodes, and kidney. We conclude that the mononuclear phagocyte system is mainly distributed in the gastrointestinal tract and liver, followed by hemopoietic and lymphoid tissues.


2002 ◽  
Vol 282 (3) ◽  
pp. C451-C460 ◽  
Author(s):  
Emily K. Blue ◽  
Zoe M. Goeckeler ◽  
Yijun Jin ◽  
Ling Hou ◽  
Shelley A. Dixon ◽  
...  

To better understand the distinct functional roles of the 220- and 130-kDa forms of myosin light chain kinase (MLCK), expression and intracellular localization were determined during development and in adult mouse tissues. Northern blot, Western blot, and histochemical studies show that the 220-kDa MLCK is widely expressed during development as well as in several adult smooth muscle and nonmuscle tissues. The 130-kDa MLCK is highly expressed in all adult tissues examined and is also detectable during embryonic development. Colocalization studies examining the distribution of 130- and 220-kDa mouse MLCKs revealed that the 130-kDa MLCK colocalizes with nonmuscle myosin IIA but not with myosin IIB or F-actin. In contrast, the 220-kDa MLCK did not colocalize with either nonmuscle myosin II isoform but instead colocalizes with thick interconnected bundles of F-actin. These results suggest that in vivo, the physiological functions of the 220- and 130-kDa MLCKs are likely to be regulated by their intracellular trafficking and distribution.


1984 ◽  
Vol 98 (3) ◽  
pp. 971-979 ◽  
Author(s):  
Y J Wan ◽  
T C Wu ◽  
A E Chung ◽  
I Damjanov

Two monoclonal antibodies raised against laminin isolated from a mouse parietal yolk sac cell line were used for immunohistochemical studies of basement membranes of the mouse embryo and various fetal and adult tissues. No immunoreactivity with either of the two monoclonal antibodies could be detected in the preimplantation-stage embryos, although it has been shown that these embryos contain extracellular laminin reactive with the conventional polyclonal antilaminin antibodies. Reichert's membrane in early postimplantation stages of development reacted with the monoclonal antibody LAM-I but not with the antibody LAM-II. However, from day 8 of pregnancy onward the Reichert's membrane reacted with both antibodies. Basement membranes of the embryo proper were unreactive with both monoclonal antibodies until day 12 of pregnancy. By day 14 some basement membranes of the fetal tissues became reactive with one or both monoclonal antibodies, whereas others remained still unreactive. In the 17-d fetus and the newborn mouse most of the basement membranes reacted with both monoclonal antibodies, whereas others still reacted with only one. Similar heterogeneity in the immunoreactivity of basement membranes of various tissues was noted in the adult mouse as well. These results indicate that the immunoreactivity of laminin in the extracellular matrix changes during development and that the basement membranes in various anatomic locations display heterogeneity even in the adult mouse.


2003 ◽  
Vol 51 (4) ◽  
pp. 455-469 ◽  
Author(s):  
Marjo Aitola ◽  
Christine M. Sadek ◽  
Jan-Åke Gustafsson ◽  
Markku Pelto-Huikko

Aint was originally identified on the basis of its interaction in vitro with the aryl hydrocarbon nuclear receptor translocator (Arnt). Arnt is a common heterodimerization partner in the basic helix-loop–helix (bHLH)-PER-ARNT-SIM (PAS) protein family and is involved in diverse biological functions. These include xenobiotic metabolism, hypoxic response, and circadian rhythm. In addition, Arnt has a crucial role during development. Aint is a member of a growing family of transforming acidic coiled-coil (TACC) proteins and is the murine homologue of human TACC3. Here we report the spatiotemporal expression of Tacc3 mRNA and protein in embryonic, postnatally developing, and adult mouse tissues using in situ hybridization and immunocytochemistry. Tacc3 mRNA was highly expressed in proliferating cells of several organs during murine development. However, the only adult tissues expressing high levels were testis and ovary. Immunocytochemistry revealed that Tacc3 is a nuclear protein. Our results suggest that Tacc3 has an important role in murine development, spermatogenesis, and oogenesis.


1984 ◽  
Vol 99 (4) ◽  
pp. 1309-1315 ◽  
Author(s):  
L M Parysek ◽  
C F Asnes ◽  
J B Olmsted

A polyclonal antiserum to a microtubule-associated protein (MAP) from mouse neuroblastoma cells (MAP 4) was used to examine the distribution of this protein in mouse tissues. Immunoblots of neuroblastoma cell microtubule protein preparations demonstrated that the antiserum reacted with a triplet of proteins at 215,000-240,000 mol wt. Antibodies affinity purified from any of the bands showed cross-reaction with the other bands, indicating these polypeptides were all immunologically related. Antibodies specific to MAP 4 decorated microtubules in cultured murine cells fixed with glutaraldehyde, and diffuse staining was seen following treatment of cells with nocodazole. The antiserum reacted with MAP 4 in extracts of brain, heart, liver, and lung from adult mouse; the triplet in brain was more closely spaced than in the other tissues or neuroblastoma cells. In kidney, spleen, and stomach, only a single band (band 4) was labeled; this band was immunologically related to the triplet and was also present in all tissues positive for the triplet. Skeletal muscle, sperm, and peripheral blood contained no reactive polypeptides. After taxol-induced polymerization, the MAP 4 triplet was preferentially associated with the microtubule pellet whereas band 4 remained in the supernatant. These data indicate that there is tissue specificity in the distribution of MAP 4, and that some tissues contain a polypeptide related to MAP 4 (band 4) that does not bind to microtubules in vitro.


1993 ◽  
Vol 120 (2) ◽  
pp. 493-502 ◽  
Author(s):  
N A Wall ◽  
M Blessing ◽  
C V Wright ◽  
B L Hogan

DVR-6 (BMP-6 or Vgr-1) is a member of the TGF-beta superfamily of polypeptide signaling molecules. In situ hybridization studies have previously shown that DVR-6 RNA is expressed in a variety of cell types in the mouse embryo, but no information has been available on protein localization and biosynthesis. We have produced a polyclonal antibody to the proregion of DVR-6 and used it to localize the protein in whole mount and sectioned embryonic, newborn, and adult mouse tissues. DVR-6 protein is expressed in the mouse nervous system beginning at 9.5 days postcoitum (d.p.c.) and continues through adulthood. A variety of epithelial tissues also produce DVR-6 protein, including the suprabasal layer of the skin, bronchiolar epithelium, and the cornea. Additionally, a stably transfected cell line, BMGE+H/D6c4, is used to study the biosynthesis of DVR-6 protein and evidence is presented for translational regulation of DVR-6 expression.


2007 ◽  
Vol 56 (3) ◽  
pp. 98-104 ◽  
Author(s):  
C. Orelio ◽  
E. Dzierzak

2007 ◽  
Vol 55 (7) ◽  
pp. 687-700 ◽  
Author(s):  
Zeshan Ahmed ◽  
Gerry Shaw ◽  
Ved P. Sharma ◽  
Cui Yang ◽  
Eileen McGowan ◽  
...  

This study identifies the actin-binding protein, coronin-1a, as a novel and effective immunohistochemical marker for microglia in both cell cultures and in formaldehyde-fixed, paraffin-embedded tissue. Antibodies to coronin-1a effectively immunostained microglia in human, monkey, horse, rat, and mouse tissues, even in tissues stored for long periods of time. The identity of coronin-1a-immunoreactive cells as microglia was confirmed using double immunolabeling with cell type-specific markers as well as by morphological features and the distribution of immunoreactive cells. These properties are shared by another actin-binding protein, IBA-1. Unlike IBA-1, coronin-1a immunoreactivity was also detected in lymphocytes and certain other hematopoietic cells. The results indicate that both coronin-1a and IBA-1 are robust markers for microglia that can be used in routinely processed tissue of humans and animals. Because both coronin-1a and IBA-1 are actin-binding proteins that play a role in rearrangement of the membrane cytoskeleton, it suggests that these proteins are critical to dynamic properties of microglia.


Sign in / Sign up

Export Citation Format

Share Document