scholarly journals Biosynthesis and in vivo localization of the decapentaplegic-Vg-related protein, DVR-6 (bone morphogenetic protein-6).

1993 ◽  
Vol 120 (2) ◽  
pp. 493-502 ◽  
Author(s):  
N A Wall ◽  
M Blessing ◽  
C V Wright ◽  
B L Hogan

DVR-6 (BMP-6 or Vgr-1) is a member of the TGF-beta superfamily of polypeptide signaling molecules. In situ hybridization studies have previously shown that DVR-6 RNA is expressed in a variety of cell types in the mouse embryo, but no information has been available on protein localization and biosynthesis. We have produced a polyclonal antibody to the proregion of DVR-6 and used it to localize the protein in whole mount and sectioned embryonic, newborn, and adult mouse tissues. DVR-6 protein is expressed in the mouse nervous system beginning at 9.5 days postcoitum (d.p.c.) and continues through adulthood. A variety of epithelial tissues also produce DVR-6 protein, including the suprabasal layer of the skin, bronchiolar epithelium, and the cornea. Additionally, a stably transfected cell line, BMGE+H/D6c4, is used to study the biosynthesis of DVR-6 protein and evidence is presented for translational regulation of DVR-6 expression.

2002 ◽  
Vol 282 (3) ◽  
pp. C451-C460 ◽  
Author(s):  
Emily K. Blue ◽  
Zoe M. Goeckeler ◽  
Yijun Jin ◽  
Ling Hou ◽  
Shelley A. Dixon ◽  
...  

To better understand the distinct functional roles of the 220- and 130-kDa forms of myosin light chain kinase (MLCK), expression and intracellular localization were determined during development and in adult mouse tissues. Northern blot, Western blot, and histochemical studies show that the 220-kDa MLCK is widely expressed during development as well as in several adult smooth muscle and nonmuscle tissues. The 130-kDa MLCK is highly expressed in all adult tissues examined and is also detectable during embryonic development. Colocalization studies examining the distribution of 130- and 220-kDa mouse MLCKs revealed that the 130-kDa MLCK colocalizes with nonmuscle myosin IIA but not with myosin IIB or F-actin. In contrast, the 220-kDa MLCK did not colocalize with either nonmuscle myosin II isoform but instead colocalizes with thick interconnected bundles of F-actin. These results suggest that in vivo, the physiological functions of the 220- and 130-kDa MLCKs are likely to be regulated by their intracellular trafficking and distribution.


Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 2069-2077
Author(s):  
E.D. Newman-Smith ◽  
Z. Werb

Mouse embryos containing only maternal chromosomes (parthenotes) develop abnormally in vivo, usually failing at the peri-implantation stage. We have analyzed the development of parthenote embryos by using an inner cell mass (ICM) outgrowth assay that mimics peri-implantation development. ICMs from normal embryos maintained undifferentiated stem cells positive for stage-specific embryonic antigen-1 and Rex-1 while differentiating into a variety of cell types, including visceral endoderm-like cells and parietal endoderm cells. In contrast, ICMs from parthenotes failed to maintain undifferentiated stem cells and differentiated almost exclusively into parietal endoderm. This suggests that parthenote ICMs have a defect that leads to differentiation, rather than maintenance, of the stem cells, and a defect that leads to a parietal endoderm fate for the stem cells. To test the hypothesis that the ICM population is not maintained owing to a lack of proliferation of the stem cells, we investigated whether mitogenic agents were able to maintain the ICM population in parthenotes. When parthenote blastocysts were supplied with the insulin-like growth factor-1 receptor (Igf-1r) and insulin-like growth factor-2 (Igf-2), two genes not detectable in parthenote blastocysts by in situ hybridization, the ICM population was maintained. Similarly, culture of parthenote blastocysts in medium conditioned by embryonic fibroblasts and supplemented with the maternal factor leukemia inhibitory factor maintained the ICM population. However, once this growth factor-rich medium was removed, the parthenote ICM cells still differentiated predominantly into parietal endoderm.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4005-4015 ◽  
Author(s):  
M. Weaver ◽  
J.M. Yingling ◽  
N.R. Dunn ◽  
S. Bellusci ◽  
B.L. Hogan

In the mature mouse lung, the proximal-distal (P-D) axis is delineated by two distinct epithelial subpopulations: the proximal bronchiolar epithelium and the distal respiratory epithelium. Little is known about the signaling molecules that pattern the lung along the P-D axis. One candidate is Bone Morphogenetic Protein 4 (Bmp4), which is expressed in a dynamic pattern in the epithelial cells in the tips of growing lung buds. Previous studies in which Bmp4 was overexpressed in the lung endoderm (Bellusci, S., Henderson, R., Winnier, G., Oikawa, T. and Hogan, B. L. M. (1996) Development 122, 1693–1702) suggested that this factor plays an important role in lung morphogenesis. To further investigate this question, two complementary approaches were utilized to inhibit Bmp signaling in vivo. The Bmp antagonist Xnoggin and, independently, a dominant negative Bmp receptor (dnAlk6), were overexpressed using the surfactant protein C (Sp-C) promoter/enhancer. Inhibiting Bmp signaling results in a severe reduction in distal epithelial cell types and a concurrent increase in proximal cell types, as indicated by morphology and expression of marker genes, including the proximally expressed hepatocyte nuclear factor/forkhead homologue 4 (Hfh4) and Clara cell marker CC10, and the distal marker Sp-C. In addition, electron microscopy demonstrates the presence of ciliated cells, a proximal cell type, in the most peripheral regions of the transgenic lungs. We propose a model in which Bmp4 is a component of an apical signaling center controlling P-D patterning. Endodermal cells at the periphery of the lung, which are exposed to high levels of Bmp4, maintain or adopt a distal character, while cells receiving little or no Bmp4 signal initiate a proximal differentiation program.


2003 ◽  
Vol 51 (4) ◽  
pp. 455-469 ◽  
Author(s):  
Marjo Aitola ◽  
Christine M. Sadek ◽  
Jan-Åke Gustafsson ◽  
Markku Pelto-Huikko

Aint was originally identified on the basis of its interaction in vitro with the aryl hydrocarbon nuclear receptor translocator (Arnt). Arnt is a common heterodimerization partner in the basic helix-loop–helix (bHLH)-PER-ARNT-SIM (PAS) protein family and is involved in diverse biological functions. These include xenobiotic metabolism, hypoxic response, and circadian rhythm. In addition, Arnt has a crucial role during development. Aint is a member of a growing family of transforming acidic coiled-coil (TACC) proteins and is the murine homologue of human TACC3. Here we report the spatiotemporal expression of Tacc3 mRNA and protein in embryonic, postnatally developing, and adult mouse tissues using in situ hybridization and immunocytochemistry. Tacc3 mRNA was highly expressed in proliferating cells of several organs during murine development. However, the only adult tissues expressing high levels were testis and ovary. Immunocytochemistry revealed that Tacc3 is a nuclear protein. Our results suggest that Tacc3 has an important role in murine development, spermatogenesis, and oogenesis.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1751 ◽  
Author(s):  
Rishikesh Kumar Gupta ◽  
Jacek Kuznicki

The present review discusses recent progress in single-cell RNA sequencing (scRNA-seq), which can describe cellular heterogeneity in various organs, bodily fluids, and pathologies (e.g., cancer and Alzheimer’s disease). We outline scRNA-seq techniques that are suitable for investigating cellular heterogeneity that is present in cell populations with very high resolution of the transcriptomic landscape. We summarize scRNA-seq findings and applications of this technology to identify cell types, activity, and other features that are important for the function of different bodily organs. We discuss future directions for scRNA-seq techniques that can link gene expression, protein expression, cellular function, and their roles in pathology. We speculate on how the field could develop beyond its present limitations (e.g., performing scRNA-seq in situ and in vivo). Finally, we discuss the integration of machine learning and artificial intelligence with cutting-edge scRNA-seq technology, which could provide a strong basis for designing precision medicine and targeted therapy in the future.


2012 ◽  
Vol 132 (1-2) ◽  
pp. 8-14 ◽  
Author(s):  
Yoshinori Matsumoto ◽  
Fumio Otsuka ◽  
Kenichi Inagaki ◽  
Naoko Tsukamoto ◽  
Mariko Takano-Narazaki ◽  
...  

2021 ◽  
Author(s):  
Atesh K Worthington ◽  
Taylor S Cool ◽  
Donna M Poscablo ◽  
Adeel Hussaini ◽  
Anna E Beaudin ◽  
...  

Traditional, adult-derived lymphocytes that circulate provide adaptive immunity to infection and pathogens. However, subsets of lymphoid cells are also found in non-lymphoid tissues and are called tissue-resident lymphoid cells (TLCs). TLCs encompass a wide array of cell types that span the spectrum of innate-to-adaptive immune function. Unlike traditional lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to understand the development of murine TLCs across multiple tissues and therefore probed the roles of Flk2 and IL7R⍺, two cytokine receptors with known roles in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing models, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled in both models. Despite this high labeling, highly quantitative, in vivo functional approaches showed that the loss of Flk2 minimally affected the generation of these cells in situ. In contrast, the loss of IL7R⍺, or combined deletion of Flk2 and IL7R⍺, dramatically reduced the cell numbers of B1a cells, MZBs, ILC2s, and Tregs both in situ and upon transplantation, indicating an intrinsic and more essential role for IL7Rα. Surprisingly, reciprocal transplants of WT HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared to TLC numbers in situ. Taken together, our data revealed functional roles of Flk2 and IL7Rα in the establishment of tissue-resident lymphoid cells.


2021 ◽  
Author(s):  
Neil McCarthy ◽  
Guodong Tie ◽  
Shariq Madha ◽  
Adrianna Maglieri ◽  
Judith Kraiczy ◽  
...  

Wnt and Rspondin (RSPO) signaling triggers proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here we report that the functional ISC niche is a complex, multi-layered mesenchymal structure that includes distinct smooth muscle populations and describe how that niche organizes early in mouse life. Diverse sub-cryptal cells provide redundant supportive factors, with distinct BMPi and the most potent Wnt agonist, RSPO2, restricted to single cell types. Two functionally opposing elements arise in tandem during a critical period of crypt morphogenesis: a prominent shelf of BMP+ sub-epithelial myofibroblasts that promote epithelial differentiation and the muscularis mucosae, a specialized muscle layer generated de novo to supplement other RSPO and BMPi sources. In vivo ablation of smooth muscle, while preserving trophocytes, raises crypt BMP activity and potently limits crypt expansion. Thus, distinct and progressively refined mesenchymal components together create the milieu necessary to propagate crypts during rapid organ growth and to sustain ISCs in the adult niche.


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 95-105
Author(s):  
JH Russ ◽  
JD Horton

This paper describes in vitro and in vivo attempts to deplete the 4- to 8-month-old Xenopus laevis (J strain) thymus of its lymphocyte compartment. Gamma irradiation (2-3000 rad) of the excised thymus, followed by two weeks in organ culture, is effective in removing lymphocytes, but causes drastic reduction in size and loss of normal architecture. In contrast, in vivo whole-body irradiation (3000 rad) and subsequent in situ residence for 8-14 days proves successful in providing a lymphocyte-depleted froglet thymus without loss of cortical and medullary zones. In vivo-irradiated thymuses are about half normal size, lack cortical lymphocytes, but still retain some medullary thymocytes; they show no signs of lymphocyte regeneration when subsequently organ cultured for 2 weeks. Light microscopy of 1 micron, plastic-embedded sections and electron microscopy reveal that a range of thymic stromal cell types are retained and that increased numbers of cysts, mucous and myoid cells are found in the thymus following whole-body irradiation. In vivo-irradiated thymuses are therefore suitable for implantation studies exploring the role of thymic stromal cells in tolerance induction of differentiating T lymphocytes.


1995 ◽  
Vol 108 (12) ◽  
pp. 3795-3805 ◽  
Author(s):  
F. Schuler ◽  
L.M. Sorokin

The expression of laminin-1 (previously EHS laminin) and laminin-2 (previously merosin) isoforms by myogenic cells was examined in vitro and in vivo. No laminin alpha 2 chainspecific antibodies react with mouse tissues, 50 rat monoclonal antibodies were raised against the mouse laminin alpha 2 chain: their characterization is described here. Myoblasts and myotubes from myogenic cell lines and primary myogenic cultures express laminin beta 1 and gamma 1 chains and form a complex with a 380 kDa alpha chain identified as laminin alpha 2 by immunofluorescence, immunoprecipitation and PCR. PCR from C2C12 myoblasts and myotubes for the laminin alpha 2 chain gene (LamA2) provided cDNA sequences which were used to investigate the in vivo expression of mouse LamA2 mRNA in embryonic tissues by in situ hybridization. Comparisons were made with specific probes for the laminin alpha 1 chain gene (LamA1). LamA2 but not LamA1 mRNA was expressed in myogenic tissues of 14- and 17-day-old mouse embryos, while the laminin alpha 2 polypeptide was localized in adjacent basement membranes in the muscle fibres. In situ hybridization also revealed strong expression of the LamA2 mRNA in the dermis, indicating that laminin alpha 2 is expressed other than by myogenic cells in vivo. Immunofluorescence studies localized laminin alpha 2 in basement membranes of basal keratinocytes and the epithelial cells of hair follicles, providing new insight into basement membrane assembly during embryogenesis. In vitro cell attachment assays revealed that C2C12 and primary myoblasts adhere to laminin-1 and -2 isoforms in a similar manner except that myoblast spreading was significantly faster on laminin-2. Taken together, the data suggest that laminins 1 and 2 play distinct roles in myogenesis.


Sign in / Sign up

Export Citation Format

Share Document