Cell-Free Bead-Based Detection of Total and Phosphorylated Proteins in Plasma and Cell Lysates

Author(s):  
Huai En Huang Chan ◽  
Iman Jilani ◽  
Richard Chang ◽  
Maher Albitar
Author(s):  
Atsuko Shirai ◽  
Akihisa Matsuyama ◽  
Yoko Yashiroda ◽  
Ritsuko Arai ◽  
Minoru Yoshida

2019 ◽  
Author(s):  
Zachary VanAernum ◽  
Florian Busch ◽  
Benjamin J. Jones ◽  
Mengxuan Jia ◽  
Zibo Chen ◽  
...  

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes, and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is timeconsuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes, or clarified cell lysates. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


2014 ◽  
Vol 10 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Matthias Rainer ◽  
Yuksel Guzel ◽  
Christoph Messner ◽  
Gunther Karl Bonn

2017 ◽  
Vol 184 (8) ◽  
pp. 2505-2513 ◽  
Author(s):  
Xiaoting Ji ◽  
Haoyuan Lv ◽  
Minghui Ma ◽  
Binglin Lv ◽  
Caifeng Ding

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Stetson Thacker ◽  
Charis Eng

AbstractPTEN has a strong Mendelian association with autism spectrum disorder (ASD), representing a special case in autism’s complex genetic architecture. Animal modeling for constitutional Pten mutation creates an opportunity to study how disruption of Pten affects neurobiology and glean potential insight into ASD pathogenesis. Subsequently, we comprehensively characterized the neural (phospho)proteome of Ptenm3m4/m3m4 mice, which exhibits cytoplasmic-predominant Pten expression, by applying mass spectrometry technology to their brains at two-weeks- (P14) and six-weeks-of-age (P40). The differentially expressed/phosphorylated proteins were subjected to gene enrichment, pathway, and network analyses to assess the affected biology. We identified numerous differentially expressed/phosphorylated proteins, finding greater dysregulation at P40 consistent with prior transcriptomic data. The affected pathways were largely related to PTEN function or neurological processes, while scant direct overlap was found across datasets. Network analysis pointed to ASD risk genes like Pten and Psd-95 as major regulatory hubs, suggesting they likely contribute to initiation or maintenance of cellular and perhaps organismal phenotypes related to ASD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chi Zhang ◽  
Li Li ◽  
Shiping Cheng ◽  
Debajyoti Chowdhury ◽  
Yong Tan ◽  
...  

Abstract Background Hypertension (HTN) patients who have phlegm-dampness syndrome (PDS) tend to be obese and have worse outcomes. However, the association of body weight (BW) changes and mechanisms underlying the pathophysiology of HTN-PDS are not well elucidated. This study aims to identify the longitudinal observations associated with the circulating markers discriminating BW changes of individuals with HTN-PDS. Methods An integrative approach relying on metabolomics and proteomics was applied to serum samples from HTN-PDS patients in a prospective cohort to identify the plausible mechanistic pathways underpinning HTN-PDS pathophysiology. Study participants were determined to have experienced a weight change if they showed a 5%–15% increase/reduction in BW at the end of the follow-up period. The joint pathway analysis and network analysis were performed using Ingenuity Pathway Analysis (IPA®) on the serum samples obtained from the participants over the period. Results The study involved 22 HTN-PDS patients who were overweight initially and were able to lose enough weight and 24 HTN-PDS individuals who developed overweight from normal BMI during a one-year follow-up. Our analysis suggested three types of phosphatidylcholine (PC) were altered. PC (22:2(13Z,16Z)/24:1(15Z)) and LysoPC (16:1(9Z)) were decreased in Queryweight gain samples, whereas the levels of PC (14:0/16:0) were increased in weight loss samples. The metabolomic analysis suggested 24 metabolites associated with HTN-PDS. Of them, 13 were up-regulated and 11 were down-regulated. The two-dimensional difference gel electrophoresis (2D DIGE) identified 45 phosphorylated proteins got altered in the HTN-PDS patients, wherein 23 were up-regulated and 22 were down-regulated. Integrated proteomic and metabolomics analyse acknowledged biomarkers PC, Complement C3, C4a/C4b, A2M and SERPINF1 as strong predictors for BW changes in HTN-PDS patients. Conclusion The combined serum proteomic and metabolomic profiling reveals a link between BW change and the complement system activity, altered phosphatidylcholine metabolism in HTN-PDS patients. Future studies with larger cohorts are required to strengthen and validate these findings.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Ashan P. Wettasinghe ◽  
Naveen Singh ◽  
Colton L. Starcher ◽  
Chloe C. DiTusa ◽  
Zakari Ishak-Boushaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document