animal modeling
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
pp. 69-76
Author(s):  
Mani Chopra ◽  
Era Seth ◽  
Sweety Mehra ◽  
Ranbir Chander Sobti

Author(s):  
Mr. Katkure Pawan Mahadev

Abstract: The use of current research into schizophrenia has remained highly fragmented, much like the clinical presentation of the disease itself. Differing theories as to the cause and progression of schizophrenia, as well as the heterogeneity of clinical symptoms, have made it difficult to develop a coherent framework suitable for animal modeling. However, a number of limited animal models have been developed to explore various causative theories and to test specific mechanistic hypotheses. Historically, these models have been based on the manipulation of neurotransmitter systems believed to be involved in schizophrenia. In recent years, the emphasis has shifted to targeting relevant brain regions in an attempt to explore potential etiologic hypotheses. The specific animal models developed within these frameworks are described in this review. Emphasis is placed on the critical evaluation of currently available models because these models help to shape the direction of future research.


2021 ◽  
Author(s):  
Aria Salehpour ◽  
Afshin Zare ◽  
Arezoo Khoradmehr ◽  
Mahdi Mahdipour ◽  
Amin Tamadon

Abstract Endometriosis is an enigmatic gynecological disease initiated by the ectopic growth of endometrial tissue and causes critical symptoms such as chronic pelvic pain, cyclic menstrual pain, subfertility or infertility. Considering extensive investigations for explaining the underlying pathophysiology of endometriosis, origin and distinctive processes which lead to endometritic state are not completely understood. In this comprehensive review, studies published from 2010 to 2021 are reviewed in order to provide a bright insight through the applications of translational animal models and endometriosis induction methods for evaluation of endometriosis pathogenesis and treatment. We provided method based inclusion criteria and reviewed all hormone-based studies with concentration on animal models. Additionally, studies with novel induction methods and approaches are categorized separately and analyzed by a novel scoring table for suitability of further investigations. Eventually, our scoring system suggested that the best-evaluated animal model for hormone related endometriosis studies is an “unopposed estrogenicity baboon model of endometriosis”.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2478
Author(s):  
Harrison C. Bergeron ◽  
Ralph A. Tripp

RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus–host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.


2021 ◽  
Vol 3 ◽  
Author(s):  
Richard B. Pyles ◽  
Aaron L. Miller ◽  
Carrie Maxwell ◽  
Lauren Dawson ◽  
Nicola Richardson-Harman ◽  
...  

The development of therapies targeted to improve the health of women has utilized direct vaginal delivery as a more effective and less toxic method of protection from HIV and other pathogens. Vaginal applicants and delivery devices that provide sustained effects have been met with increasing acceptability, but the efficacy and toxicity outcomes have not been successfully predicted by preclinical in vitro studies and animal modeling. We have explored the utilization of sheep as a model for testing the safety of vaginal applicants and devices based on spatial and structural similarities to the human vagina. As recently noted by the FDA, an additional safety measure is an impact on the vaginal microbiome (VMB) that is known to contribute to vaginal health and influence pathogen susceptibility and drug metabolism. To advance the utility of the sheep vaginal model, we completed a thorough molecular characterization of the ovine VMB utilizing both next-generation sequencing (NGS) and PCR methods. The process also created a custom PCR array to quantify ovine VMB community profiles in an affordable, higher throughput fashion. The results from vaginal swabs (>475 samples) collected from non-pregnant crossbred Dorset and Merino ewes treated with selected vaginal applicants or collected as sham samples established 16 VMB community types (VMB CTs). To associate VMB CTs with eubiosis or dysbiosis, we also completed custom ELISAs for six cytokines identifying IL1B, IL8, TNFa, and CXCL10 as useful markers to support the characterization of ovine vaginal inflammation. The results indicated that Pasteurella, Actinobacillus, Pseudomonas, Bacteroides, Leptotrichia, and E. coli were common markers of eubiosis (low inflammatory marker expression), and that Haemophilus, Ureaplasma, and Corynebacterium were associated with dysbiosis (high cytokine levels). Utilizing the optimized workflow, we also confirmed the utility of three commonly used vaginal applicants for impact on the VMB and inflammatory state, producing a dataset that supports the recommendation for the use of sheep for testing of vaginal applicants and devices as part of preclinical pipelines.


2021 ◽  
Author(s):  
Enkhsaikhan Purevjav ◽  
Michelle Chintanaphol ◽  
Buyan-Ochir Orgil ◽  
Nelly R. Alberson ◽  
Jeffrey A. Towbin

Cardiomyopathy or disease of the heart muscle involves abnormal enlargement and a thickened, stiff, or spongy-like appearance of the myocardium. As a result, the function of the myocardium is weakened and does not sufficiently pump blood throughout the body nor maintain a normal pumping rhythm, leading to heart failure. The main types of cardiomyopathies include dilated hypertrophic, restrictive, arrhythmogenic, and noncompaction cardiomyopathy. Abnormal trabeculations of the myocardium in the left ventricle are classified as left ventricular noncompaction cardiomyopathy (LVNC). Myocardial noncompaction most frequently is observed at the apex of the left ventricle and can be associated with chamber dilation or muscle hypertrophy, systolic or diastolic dysfunction, or both, or various forms of congenital heart disease. Animal models are incredibly important for uncovering the etiology and pathogenesis involved in this disease. This chapter will describe the clinical and pathological features of LVNC in humans and present the animal models that have been used for the study of the genetic basis and pathogenesis of this disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Genta Ishikawa ◽  
Angela Liu ◽  
Erica L. Herzog

While epithelial-fibroblast interactions are viewed as the primary drivers of Idiopathic Pulmonary Fibrosis (IPF), evidence gleaned from animal modeling and human studies implicates innate immunity as well. To provide perspective on this topic, this review synthesizes the available data regarding the complex role of innate immunity in IPF. The role of substances present in the fibrotic microenvironment including pathogen associated molecular patterns (PAMPs) derived from invading or commensal microbes, and danger associated molecular patterns (DAMPs) derived from injured cells and tissues will be discussed along with the proposed contribution of innate immune populations such as macrophages, neutrophils, fibrocytes, myeloid suppressor cells, and innate lymphoid cells. Each component will be considered in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nick Sarn ◽  
Stetson Thacker ◽  
Hyunpil Lee ◽  
Charis Eng

Abstract Background Autism spectrum disorder (ASD) has a strong genetic etiology. Germline mutation in the tumor suppressor gene PTEN is one of the best described monogenic risk cases for ASD. Animal modeling of cell-specific Pten loss or mutation has provided insight into how disruptions to the function of PTEN affect neurodevelopment, neurobiology, and social behavior. As such, there is a growing need to understand more about how various aspects of PTEN activity and cell-compartment-specific functions, contribute to certain neurological or behavior phenotypes. Methods To understand more about the relationship between Pten localization and downstream effects on neurophenotypes, we generated the nuclear-predominant PtenY68H/+ mouse, which is identical to the genotype of some PTEN-ASD individuals. We subjected the PtenY68H/+ mouse to morphological and behavioral phenotyping, including the three-chamber sociability, open field, rotarod, and marble burying tests. We subsequently performed in vivo and in vitro cellular phenotyping and concluded the work with a transcriptomic survey of the PtenY68H/+ cortex, which profiled gene expression. Results We observe a significant increase in P-Akt downstream of canonical Pten signaling, macrocephaly, decreased sociability, decreased preference for novel social stimuli, increased repetitive behavior, and increased thigmotaxis in PtenY68H/+ six-week-old (P40) mice. In addition, we found significant microglial activation with increased expression of complement and neuroinflammatory proteins in vivo and in vitro accompanied by enhanced phagocytosis. These observations were subsequently validated with RNA-seq and qRT-PCR, which revealed overexpression of many genes involved in neuroinflammation and neuronal function, including oxytocin. Oxytocin transcript was fivefold overexpressed (P = 0.0018), and oxytocin protein was strongly overexpressed in the PtenY68H/+ hypothalamus. Conclusions The nuclear-predominant PtenY68H/+ model has clarified that Pten dysfunction links to microglial pathology and this associates with increased Akt signaling. We also demonstrate that Pten dysfunction associates with changes in the oxytocin system, an important connection between a prominent ASD risk gene and a potent neuroendocrine regulator of social behavior. These cellular and molecular pathologies may related to the observed changes in social behavior. Ultimately, the findings from this work may reveal important biomarkers and/or novel therapeutic modalities that could be explored in individuals with germline mutations in PTEN with ASD.


Sign in / Sign up

Export Citation Format

Share Document