Ion Channels, Transporters, and Electrical Signaling

2008 ◽  
pp. 53-89 ◽  
Author(s):  
Stanko S. Stojilkovic
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ferenc Papp ◽  
Suvendu Lomash ◽  
Orsolya Szilagyi ◽  
Erika Babikow ◽  
Jaime Smith ◽  
...  

Voltage-activated ion channels contain S1-S4 domains that sense membrane voltage and control opening of ion-selective pores, a mechanism that is crucial for electrical signaling. Related S1-S4 domains have been identified in voltage-sensitive phosphatases and voltage-activated proton channels, both of which lack associated pore domains. hTMEM266 is a protein of unknown function that is predicted to contain an S1-S4 domain, along with partially structured cytoplasmic termini. Here we show that hTMEM266 forms oligomers, undergoes both rapid (µs) and slow (ms) structural rearrangements in response to changes in voltage, and contains a Zn2+ binding site that can regulate the slow conformational transition. Our results demonstrate that the S1-S4 domain in hTMEM266 is a functional voltage sensor, motivating future studies to identify cellular processes that may be regulated by the protein. The ability of hTMEM266 to respond to voltage on the µs timescale may be advantageous for designing new genetically encoded voltage indicators.


2007 ◽  
Vol 130 (5) ◽  
pp. 497-511 ◽  
Author(s):  
Mirela Milescu ◽  
Jan Vobecky ◽  
Soung H. Roh ◽  
Sung H. Kim ◽  
Hoi J. Jung ◽  
...  

Voltage-activated ion channels are essential for electrical signaling, yet the mechanism of voltage sensing remains under intense investigation. The voltage-sensor paddle is a crucial structural motif in voltage-activated potassium (Kv) channels that has been proposed to move at the protein–lipid interface in response to changes in membrane voltage. Here we explore whether tarantula toxins like hanatoxin and SGTx1 inhibit Kv channels by interacting with paddle motifs within the membrane. We find that these toxins can partition into membranes under physiologically relevant conditions, but that the toxin–membrane interaction is not sufficient to inhibit Kv channels. From mutagenesis studies we identify regions of the toxin involved in binding to the paddle motif, and those important for interacting with membranes. Modification of membranes with sphingomyelinase D dramatically alters the stability of the toxin–channel complex, suggesting that tarantula toxins interact with paddle motifs within the membrane and that they are sensitive detectors of lipid–channel interactions.


2016 ◽  
Vol 6 ◽  
pp. 03001 ◽  
Author(s):  
Jean-Marie Frachisse ◽  
Daniel Tran

2019 ◽  
Vol 400 (10) ◽  
pp. 1303-1322 ◽  
Author(s):  
Marina Schrecker ◽  
Dorith Wunnicke ◽  
Inga Hänelt

Abstract Potassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK). RCK domains and subunits form octameric rings, which control ion gating. For years, a common regulatory mechanism was suggested: ligand-induced conformational changes in the octameric ring would pull open a gate in the pore via flexible linkers. Consistently, ligand-dependent conformational changes were described for various RCK gating rings. Yet, recent structural and functional data of complete ion channels uncovered that the following signal transduction to the pore domains is divers. The different RCK-regulated ion channels show remarkably heterogeneous mechanisms with neither the connection from the RCK domain to the pore nor the gate being conserved. Some channels even lack the flexible linkers, while in others the gate cannot easily be assigned. In this review we compare available structures of RCK-gated potassium channels, highlight the similarities and differences of channel gating, and delineate existing inconsistencies.


2019 ◽  
Author(s):  
Ming Yang ◽  
Andrew D. James ◽  
Rakesh Suman ◽  
Richard Kasprowicz ◽  
Michaela Nelson ◽  
...  

AbstractIon channels can regulate the plasma membrane potential (Vm) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically-encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.


2003 ◽  
pp. 37-71
Author(s):  
Stanko S. Stojilkovic ◽  
Gregory Cooper ◽  
Robert L. Rodnitzky

Sign in / Sign up

Export Citation Format

Share Document