scholarly journals Assaying Chromatin Structure and Remodeling by Restriction Enzyme Accessibility

Author(s):  
Kevin W. Trotter ◽  
Trevor K. Archer
Author(s):  
Yasuyuki Ohkawa ◽  
Chandrashekara Mallappa ◽  
Caroline S. Dacwag Vallaster ◽  
Anthony N. Imbalzano

2019 ◽  
Author(s):  
Răzvan V. Chereji ◽  
Peter R. Eriksson ◽  
Josefina Ocampo ◽  
David J. Clark

ABSTRACTDNA accessibility is thought to be of major importance in regulating gene expression. We test this hypothesis using a restriction enzyme as a probe of chromatin structure and as a proxy for transcription factors. We measured the digestion rate and the fraction of accessible DNA at all genomicAluI sites in budding yeast and mouse liver nuclei. Hepatocyte DNA is more accessible than yeast DNA, consistent with longer linkers between nucleosomes, and indicating that nucleosome spacing is a major determinant of accessibility. DNA accessibility varies from cell to cell, such that essentially no sites are accessible or inaccessible in every cell.AluI sites in inactive mouse promoters are accessible in some cells, implying that transcription factors could bind without activating the gene. Euchromatin and heterochromatin have very similar accessibilities, suggesting that transcription factors can penetrate heterochromatin. Thus, DNA accessibility is not likely to be the primary determinant of gene regulation.


2003 ◽  
Vol 23 (22) ◽  
pp. 8099-8109 ◽  
Author(s):  
AeRi Kim ◽  
Ann Dean

ABSTRACT Gene activation requires alteration of chromatin structure to facilitate active transcription complex formation at a gene promoter. Nucleosome remodeling complexes and histone modifying complexes each play unique and interdependent roles in bringing about these changes. The role of distant enhancers in these structural alterations is not well understood. We studied nucleosome remodeling and covalent histone modification mediated by the β-globin locus control region HS2 enhancer at nucleosome-level resolution throughout a 5.5-kb globin gene model locus in vivo in K562 cells. We compared the transcriptionally active locus to one in which HS2 was inactivated by mutations in the core NF-E2 sites. In contrast to inactive templates, nucleosomes were mobilized in discrete areas of the active locus, including the HS2 core and the proximal promoter. Large differences in restriction enzyme accessibility between the active and inactive templates were limited to the regions of nucleosome mobilization, which subsumed the DNase I hypersensitive sites. In contrast to this discrete pattern, histone H3 and H4 acetylation and H3 K4 methylation were elevated across the entire active locus, accompanied by depletion of linker histone H1. The coding region of the gene differed from the regulatory regions, demonstrating both nucleosome mobilization and histone hyperacetylation, but lacked differences in restriction enzyme accessibility between transcriptionally active and inactive genes. Thus, although the histone modification pattern we observe is consistent with the spreading of histone modifying activity from the distant enhancer, the pattern of nucleosome mobilization is more compatible with direct contact between an enhancer and promoter.


2001 ◽  
Vol 12 (11) ◽  
pp. 3365-3374 ◽  
Author(s):  
Bonnie J. Deroo ◽  
Trevor K. Archer

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that induces expression of many genes. The GR has been useful for understanding how chromatin structure regulates steroid-induced transcription in model systems. However, the effect of glucocorticoids on chromatin structure has been examined on few endogenous mammalian promoters. We investigated the effect of glucocorticoids on the in vivo chromatin structure of the glucocorticoid-responsive IκBα gene promoter, the inhibitor of the ubiquitous transcription factor, nuclear factor kappa B (NFκB). Glucocorticoids inhibit NFκB activity in some tissues by elevating the levels of IκBα. We found that glucocorticoids activated the IκBα promoter in human T47D/A1-2 cells containing the GR. We then investigated the chromatin structure of the IκBα promoter in the absence and presence of glucocorticoids with the use of micrococcal nuclease, restriction enzyme, and deoxyribonuclease (DNaseI) analyses. In untreated cells, the promoter assembles into regularly positioned nucleosomes, and glucocorticoid treatment did not alter nucleosomal position. Restriction enzyme accessiblity studies indicated that the IκBα promoter is assembled as phased nucleosomes that adopt an “open” chromatin architecture in the absence of hormone. However, glucocorticoids may be required for transcription factor binding, because DNaseI footprinting studies suggested that regulatory factors bind to the promoter upon glucocorticoid treatment.


Author(s):  
Soichiro Arai ◽  
Yuh H. Nakanishi

Although many electron microscopic studies on extracted chromatin have provided considerable information on chromatin condensation induced by divalent cations, there is only a little literature available on the effects of divalent cations on chromatin structure in intact nuclei. In the present study, the effects of Mg2+ on chromatin structure in isolated chicken liver nuclei were examined over a wide concentration range of Mg2+ by scanning electron microscopy.Nuclei were prepared from chicken liver by the method of Chauveau et al. with some modifications. The nuclei were suspended in 25 mM triethanolamine chloride buffer (pH7.4) with 1 mM EDTA or in the buffer with concentrations of MgCl2 varying from 1 to 50 mM. After incubation for 1 min at 0°C, glutaraldehyde was added to 1.8% and the nuclei were fixed for 1 h at 4°C. The fixed nuclei were mixed with 15% gelatin solution warmed at about 40°C, and kept at room temperature until the mixture set. The gelatin containing the nuclei was fixed with 2% glutaraldehyde for 2-4 h, and cut into small blocks. The gelatin blocks were conductive-stained with 2% tannic acid and 2% osmium tetroxide, dehydrated in a graded series of ethanol, and freeze-cracked with a razor blade in liquid nitrogen.


2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


Diabetes ◽  
1984 ◽  
Vol 33 (10) ◽  
pp. 958-965 ◽  
Author(s):  
D. Owerbach ◽  
B. Hagglof ◽  
A. Lernmark ◽  
G. Holmgren

Sign in / Sign up

Export Citation Format

Share Document