Measurements of Control Plane Reliability and Performance

Author(s):  
Lee Breslau ◽  
Aman Shaikh
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4779
Author(s):  
Sorin Buzura ◽  
Bogdan Iancu ◽  
Vasile Dadarlat ◽  
Adrian Peculea ◽  
Emil Cebuc

Software-defined wireless sensor networking (SDWSN) is an emerging networking architecture which is envisioned to become the main enabler for the internet of things (IoT). In this architecture, the sensors plane is managed by a control plane. With this separation, the network management is facilitated, and performance is improved in dynamic environments. One of the main issues a sensor environment is facing is the limited lifetime of network devices influenced by high levels of energy consumption. The current work proposes a system design which aims to improve the energy efficiency in an SDWSN by combining the concepts of content awareness and adaptive data broadcast. The purpose is to increase the sensors’ lifespan by reducing the number of generated data packets in the resource-constrained sensors plane of the network. The system has a distributed management approach, with content awareness being implemented at the individual programmable sensor level and the adaptive data broadcast being performed in the control plane. Several simulations were run on historical weather and the results show a significant decrease in network traffic. Compared to similar work in this area which focuses on improving energy efficiency with complex algorithms for routing, clustering, or caching, the current proposal employs simple computing procedures on each network device with a high impact on the overall network performance.


2004 ◽  
Vol 44 (4) ◽  
pp. 513-527 ◽  
Author(s):  
S. Giordano ◽  
M. Listanti ◽  
F. Mustacchio ◽  
S. Niccolini ◽  
S. Salsano ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3267 ◽  
Author(s):  
Kyungwoon Lee ◽  
Chiyoung Lee ◽  
Cheol-Ho Hong ◽  
Chuck Yoo

Fog computing, which places computing resources close to IoT devices, can offer low latency data processing for IoT applications. With software-defined networking (SDN), fog computing can enable network control logics to become programmable and run on a decoupled control plane, rather than on a physical switch. Therefore, network switches are controlled via the control plane. However, existing control planes have limitations in providing isolation and high performance, which are crucial to support multi-tenancy and scalability in fog computing. In this paper, we present optimization techniques for Linux to provide isolation and high performance for the control plane of SDN. The new techniques are (1) separate execution environment (SE2), which separates the execution environments between multiple control planes, and (2) separate packet processing (SP2), which reduces the complexity of the existing network stack in Linux. We evaluate the proposed techniques on commodity hardware and show that the maximum performance of a control plane increases by four times compared to the native Linux while providing strong isolation.


Author(s):  
Wayne M. Bynoe ◽  
Stephen M. McGarry ◽  
Leonid Veytser ◽  
Paul Christensen ◽  
Mark Yeager ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 950 ◽  
Author(s):  
Yue Jiang ◽  
Hongyi Chen ◽  
Xiangrui Yang ◽  
Zhigang Sun ◽  
Wei Quan

The southbound protocol of Software Defined Networking (SDN) enables the direct access into SDN switches which accelerates the innovation and deployment of network functions in the data plane. Correspondingly, SDN switches that support the new southbound protocol and provide high performance are developed continuously. Therefore, there is an increasing need for testing tools to test such equipment in terms of protocol correctness and performance. However, existing tools have deficiencies in flexibility for verifying the novel southbound protocol, time synchronization between the two planes, and supporting more testing functions with less resource consumption. In this paper, we present the concept of CPU & FPGA co-design Tester (CFT) for SDN switches, which provides flexible APIs for test cases of the control plane and high performance for testing functions in the data plane. We put forward an efficient scheduling algorithm to integrate the control plane and the data plane into a single pipeline which fundamentally solves the time asynchronization between these two planes. Due to the reconfigurable feature of our proposed pipeline, it becomes possible to perform different testing functions in one pipeline. Through a prototype implementation and evaluation, we reveal that the proposed CFT can verify the protocol correctness of SDN switches on the control plane while providing no-worse performance for tests on the data plane compared with commercial testers.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2766 ◽  
Author(s):  
Helber Wagner da Silva ◽  
Augusto José Venâncio Neto

The combination of IoT and mobility promises to open a new frontier of innovations in smart environments, through the advent of the Internet of Moving Things (IoMT) paradigm. In IoMT, an array of IoT devices leverage IP-based mobile connectivity to provide a vast range of data ubiquitously. The IoMT realization will foster smart environments at unprecedented levels, by efficiently affording services and applications whereby today’s technologies make their efficiency unfeasible, such as autonomous driving and in-ambulance remotely-assisted patient. IoMT-supported mission-critical applications push computing and networking requirements to totally new levels that must be met, raising the need for refined approaches that advance beyond existing technologies. In light of this, this paper proposes the Resilient MultiUser Session Control (ReMUSiC) framework, which deploys emerging softwarization and cloudification technologies to afford flexible, optimized and self-organized control plane perspectives. ReMUSiC extends our previous work through the following innovations. A quality-oriented resilience mechanism is capable of responding to network dynamics events (failure and mobility) by readapting IoMT multiuser mobile sessions. A softwarized networking control plane that allows to, at runtime, both fetch current network state and set up resources in the attempt to always keep affected IoMT multiuser mobile sessions best-connected and best-served. A cloudification approach allows a robust environment, through which cloud- and fog-systems interwork to cater to performance-enhanced capabilities. The IoMT’s suitability and performance impacts by ReMUSiC framework use are assessed through real testbed prototyping. Impact analysis in Quality of Service (QoS) performance and perceived Quality of Experience (QoE), demonstrate the remarkable abilities of the ReMUSiC framework, over a related approach, in keeping IoMT multiuser mobile sessions always best-connected and best-served.


Sign in / Sign up

Export Citation Format

Share Document