Correlation Between Treadmill Acceleration, Plantar Pressure, and Ground Reaction Force During Running (P52)

2008 ◽  
pp. 281-290
Author(s):  
J. Y. Lee Alex ◽  
Jia-Hao Chou ◽  
Ying-Fang Liu ◽  
Wei-Hsiu Lin ◽  
Tzyy-Yuang Shiang
2020 ◽  
Vol 36 (3) ◽  
pp. 134-140
Author(s):  
Piaolin Peng ◽  
Shaolan Ding ◽  
Zhikang Wang ◽  
Yifan Zhang ◽  
Jiahao Pan

The purpose of this study was to explore the immediate effects of running speed and midsole type on foot loading during heel–toe running. Fifteen healthy male college students were required to complete 3 running trials on an indoor 45-m tartan runway at 4 different speeds (3, 4, 5, and 6 m/s) using 2 different running footwear types (engineering thermoplastic polyurethane elastomer, polyurethane elastomer; and ethylene vinyl acetate, vinyl acetate). The ground reaction force and plantar pressure data were quantified. Significant speed effects were detected both in ground reaction force and plantar pressure-related data (P < .05). Vertical average loading rate was significantly less, and time to first peak occurred later for the polyurethane elastomer compared with vinyl acetate footwear (P < .05). The peak pressure of the heel, medial forefoot, central forefoot, lateral forefoot, and big toe was significantly less when subjects wore a polyurethane elastomer than vinyl acetate footwear (P < .05). Overall, our results suggested that, compared with the vinyl acetate footwear, the special polyurethane elastomer footwear that is adhered with thousands of polyurethane elastomer granules was effective at reducing the mechanical impact on the foot.


2021 ◽  
Author(s):  
Fatemeh Aghakeshizadeh ◽  
Amir Letafatkar ◽  
Peyman Aghaei Ataabadi ◽  
Mahdi Hosseinzadeh

Abstract Background: People suffering from flat foot show more movements in hindfoot and midfoot joints as compared to the others. The anti-pronation tapings are supposed to provide temporary external support for the medial longitudinal arch. The aim of this study was to examine the effects of two types of anti-pronation taping on the lower limb kinetics in flat foot people before and after performing a physical fatigue protocol. Methods: 20 male and female with flat foot aged 22.39 ± 2.02 years old were studied under three conditions (untaping, reverse-6 taping and low-dye taping) either before or after fatigue states. The maximum plantar pressure and ground reaction force were measured by an RSscan foot scan system during walking. Results: A statistically significant difference was observed after applying two types of taping (reverse-6 vs. low-dye taping) in the maximum plantar pressure perceived in metatarsus 1 (P = 0.016) and lateral heel (P = 0.044). In the post-fatigue conditions, there were significant differences between the two taping types in metatarsus 4 (P = 0.024). The maximum ground reaction force in toe 1 (P = 0.001), toe 2-5 (P = 0.001), metatarsus 5 (P = 0.001), and medial heel (P = 0.001) was significantly different between reverse-6 and Low-dye tapings. Conclusions: The results indicated that the low-dye and reverse-6 taping types can reduce the pressure on the medial side of the foot, and push it towards the lateral side. It is therefore suggested using taping as an effective treatment for redistribution of the pressure and force in sole of the foot in people with flat foot.


Author(s):  
QUAN HU ◽  
PING CAI

A method for estimating ground reaction force (GRF) with plantar pressure was proposed in this paper. The estimation model was constructed to approximate the nonlinear relationships between GRF and the plantar pressure according to the linear combinations of Gaussian kernel functions. Partial least squares regression (PLSR) was adopted to obtain model parameters and eliminate multicollinearity among the pressure components. The general model and subject-specific models were constructed for 12 male and 4 female subjects. Moreover, a data expansion method was introduced for the establishment of subject-specific model, which is implemented by searching and adopting the data with consistent statistical characteristics in a pre-established database. That approach is particularly meaningful for the group whose walking ability is limited or clinic where the force platform is not available. The NRMSEs (%) for general model were 5.27–7.85% (GRF_V), 7.35–8.53% (GRF_ML), and 8.82–10.54% (GRF_AP). The maximum NRMSEs (%) for subject-specific models were 5.02% (GRF_V), 9.91% (GRF_ML), and 10.23% (GRF_AP). Results showed that both general and subject-specific models achieved higher accuracy than existing methods such as linear regression and neural network methods.


2019 ◽  
Vol 6 (1) ◽  
pp. 1602969
Author(s):  
Hamada Ahmed Hamada ◽  
Dalia Mosaad ◽  
Manal Fahim ◽  
Gehan Abd El-Samea ◽  
Amel Youssef ◽  
...  

2006 ◽  
Vol 96 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Claudia Giacomozzi ◽  
Maria Grazia Benedetti ◽  
Alberto Leardini ◽  
Velio Macellari ◽  
Sandro Giannini

There is little knowledge of the functional performance of patients with talocalcaneal coalition because of the marginal quantitative information accessible using current motion-analysis and plantar pressure–measurement techniques. A novel system was developed for comprehensively measuring foot–floor interaction during the stance phase of gait that integrates instrumentation for simultaneously measuring bony segment position, ground reaction force, and plantar pressure with synchronization of spatial and temporal variables. An advanced anatomically based analysis of foot joint rotations was also applied. Tracking of numerous anatomical landmarks allowed accurate selection of three footprint subareas and reliable estimation of relevant local forces and moments. Eight patients (11 feet) with talocalcaneal coalition were analyzed. Major impairment of the rearfoot was found in nonsurgical patients, with an everted attitude, limited plantarflexion, and overloading in all three components of ground reaction force. Surgical patients showed more normal loading patterns in each footprint subarea. This measuring system allowed for accurate inspection of the effects of surgical treatment in the entire foot and at several footprint subareas. Surgical treatment of talocalcaneal coalition seems to be effective in restoring more physiologic subtalar and forefoot motion and loading patterns. (J Am Podiatr Med Assoc 96(2): 107–115, 2006)


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3613 ◽  
Author(s):  
Rui Zhang ◽  
Dianlei Han ◽  
Songsong Ma ◽  
Gang Luo ◽  
Qiaoli Ji ◽  
...  

BackgroundThe ostrich is a cursorial bird with extraordinary speed and endurance, especially in the desert, and thus is an ideal large-scale animal model for mechanic study of locomotion on granular substrate.MethodsThe plantar pressure distributions of ostriches walking/running on loose sand/solid ground were recorded using a dynamic pressure plate.ResultsThe center of pressure (COP) on loose sand mostly originated from the middle of the 3rd toe, which differed from the J-shaped COP trajectory on solid ground. At mid-stance, a high-pressure region was observed in the middle of the 3rd toe on loose sand, but three high-pressure regions were found on solid ground. The gait mode significantly affected the peak pressures of the 3rd and 4th toes (p = 1.5 × 10−6and 2.39 × 10−8, respectively), but not that of the claw (p = 0.041). The effects of substrate were similar to those of the gait mode.DiscussionGround reaction force trials of each functional part showed the 3rd toe bore more body loads and the 4th toe undertook less loads. The pressure distributions suggest balance maintenance on loose sand was provided by the 3rd and 4th toes and the angle between their length axes. On loose sand, the middle of the 3rd toe was the first to touch the sand with a smaller attack angle to maximize the ground reaction force, but on solid ground, the lateral part was the first to touch the ground to minimize the transient loading. At push-off, the ostrich used solidification properties of granular sand under the compression of the 3rd toe to generate sufficient traction.


Sign in / Sign up

Export Citation Format

Share Document