Effect of six retinoids and retinoic acid catabolic inhibitor liarozole on two glioblastoma cell lines, and in-vivo experience in malignant brain tumor patients

1994 ◽  
pp. 590-598 ◽  
Author(s):  
M. E. Westarp ◽  
M. P. Westarp ◽  
W. Bollag ◽  
J. Bruynseels ◽  
H. Biesalski ◽  
...  
1995 ◽  
Vol 133 (3-4) ◽  
pp. 184-190 ◽  
Author(s):  
L. Magrassi ◽  
G. Butti ◽  
S. Pezzotta ◽  
L. Infuso ◽  
G. Milanesi

2012 ◽  
Vol 131 (2) ◽  
pp. E33-E44 ◽  
Author(s):  
Pietro Ferruzzi ◽  
Federica Mennillo ◽  
Antonella De Rosa ◽  
Cinzia Giordano ◽  
Marco Rossi ◽  
...  

2002 ◽  
Vol 50 (6) ◽  
pp. 479-489 ◽  
Author(s):  
Ioannis A. Avramis ◽  
Garyfallia Christodoulopoulos ◽  
Atsushi Suzuki ◽  
Walter E. Laug ◽  
Ignacio Gonzalez-Gomez ◽  
...  

2002 ◽  
Vol 160 (4) ◽  
pp. 1279-1292 ◽  
Author(s):  
L'Houcine Ouafik ◽  
Samantha Sauze ◽  
Françoise Boudouresque ◽  
Olivier Chinot ◽  
Christine Delfino ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi209-vi210
Author(s):  
Ebin Sebastian ◽  
Tiantian Cui ◽  
Erica Hlavin Bell ◽  
Joseph McElroy ◽  
Benjamin Johnson ◽  
...  

Abstract BACKGROUND Glioblastoma is the most aggressive brain tumor with poor prognosis despite the best available treatment. MicroRNAs (miRNAs) are emerging as promising, novel prognostic biomarkers and therapeutic targets in glioblastoma. In a previous study, we demonstrated that miR-4516 predicts poor prognosis and functions as an oncogene in glioblastoma. Aim of the current study is to examine the role miR-4516 in radiation resistance and identify downstream targets contributing to this phenotype METHODS Radiosensitization was evaluated by cell viability and clonogenic assays. Cell apoptosis was evaluated using flow cytometry and immunoblotting. Potential targets of miR-4516 were identified using bioinformatic analysis (Targetscan and miRDB) and confirmed by luciferase reporter assays. Results were validated using immunoblotting. miR-4516 expression in glioblastoma cell lines after radiation treatment was quantified by qRT-PCR. RESULTS Expression of miR-4516 was increased up to 15 fold following radiation treatment, peaking at around 15min-60 min in primary and established glioblastoma cell lines including GBM 08-387, GBM 30 and U87-MG. Furthermore, inhibition of miR-4516 sensitized GBM 08-387, GBM30 and U87-MG cells to radiation in comparison to control groups as determined by cell viability and clonogenic assays. Further, miR-4516 inhibition induced apoptosis in these cell lines following radiation treatment. While conducting mechanistic studies, we found that the tumor-promoting function of miR-4516 was, in part, mediated by inhibition of p21 and PTPN14, two direct targets of miR-4516 CONCLUSION Our data suggest that radiation induces the expression of miR-4516 in glioblastoma cell lines. This miRNA plays a critical role in radio-resistance and promotes aggressive phenotypes in glioblastoma and therefore, functional analyses of its target pathways may uncover novel therapeutically vulnerable target(s) in glioblastoma. FUNDING: R01CA108633, R01CA169368, RC2CA148190, U10CA180850-01(NCI), Brain Tumor Funders Collaborative Grant, and OSU-CCC (all to AC). The Ton and Patricia Bohnenn Fund for Neuro_Oncology Research (to PR).


2014 ◽  
Vol 60 (3) ◽  
pp. 308-321 ◽  
Author(s):  
S.N. Naryzhny ◽  
N.L. Ronzhina ◽  
M.A. Mainskova ◽  
N.V. Belyakova ◽  
R.A. Pantina ◽  
...  

High grade glioma (glioblastoma) is the most common brain tumor. Its malignancy makes it the fourth biggest cause of cancer death. In our experiments we used several glioblastoma cell lines generated in our laboratory to obtain proteomics information specific for this disease. This study starts our developing the complete 2DE map of glioblastoma proteins. 2DE separation with following imaging, immunochemistry, spot picking, and mass-spectrometry allowed us detecting and identifying more than 100 proteins. Several of them have prominent differences in their level between norm and cancer. Among them are alpha-enolase (ENOA_HUMAN), pyruvate kinase isozymes M1/M2 (KPYM_HUMAN), cofilin 1 (COF1_HUMAN), translationally-controlled tumor protein TCTP_HUMAN, annexin 1 (ANXA1_HUMAN), PCNA (PCNA_HUMAN), p53 (TP53_HUMAN) and others. Most interesting results were obtained with protein p53. In all glioblastoma cell lines, its level was dramatically up regulated and enriched by multiple additional isoforms. This distribution is well correlated with presence of these proteins inside of cells themselves. At this initial step we suggest the panel of specific brain tumor markers (signature) to help creating noninvasive techniques to diagnose disease. These preliminary data point to these proteins as promising markers of glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document