Energy Consumption of an Energy Efficient Building Envelope in the Canadian Arctic

Author(s):  
Carsen Banister ◽  
Michael Swinton ◽  
Travis Moore ◽  
Dennis Krys ◽  
Iain Macdonald
2014 ◽  
Vol 18 (3) ◽  
pp. 925-934 ◽  
Author(s):  
Meghana Charde ◽  
Sourabh Bhati ◽  
Ayushman Kheterpal ◽  
Rajiv Gupta

Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m ? 4.0 m ? 3.0 m) and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.


2019 ◽  
Vol 111 ◽  
pp. 06074
Author(s):  
Silviana Brata ◽  
Cristina Tanasa ◽  
Valeriu Stoian ◽  
Dan Stoian ◽  
Daniel Dan ◽  
...  

The significant share of energy consumption of the building sector in the total energy consumption makes it responsible for 36% of CO2 emission in the European Union. In the last decade a key objective of the EU is to improve the energy efficiency and increase the use of renewables in buildings. Ground-to-air heat exchangers can be a solution for reducing primary energy consumption from nonrenewable sources in buildings and contribute to the share of energy from renewable sources. The research in this paper deals with investigations on a ground to air heat exchanger of a pilot energy efficient building, constructed in west side of Romania. The study presents the assessment of the heating and cooling energy potential of the ground-to-air heat exchanger serving the energy efficient building. Three full years of measurements of the air temperature entering the ground-air heat exchanger and the outlet air temperature are available and were used in the study. A comparison is made between the energy potential determined based on temperature measurements and the energy potential based on calculated outlet temperatures using a computational model and conventional climate data for the building location.


2020 ◽  
Vol 307 ◽  
pp. 01022
Author(s):  
Gitanjali Thakur ◽  
Mohamad Asalam ◽  
Mohammed El Ganaoui

One of the major environmental threat in the world today is the increased production of plastic and its usage. The inept plastic waste management system with regard to its recycling and energy recovery in the developing countries creates a global threat as a major land and water body pollutant. However, its durability, thermal properties, and chemical resistance make plastics an alternate choice as a building material. This study investigates the use of plastic in concrete mixture with an objective to improve the thermal performance of the building. The shredded plastic fibers from plastic bottles (polyethylene terephthalate, PET) were used as a partial weight replacement (2.5%, 5%, and 7.5%) of coarse aggregate in concrete blocks. The cubes were cast using the Indian standards (IS 456) and the essential tests were performed. Additionally, experiments were designed to investigate the change in the thermal conductivity of the concrete block due to the varying amount of plastic. It was found that the use of PETs affected the compressive strength and also decreased the thermal conductivity of the concrete blocks. The experimental results suggest that PETs can be used in the construction of energy-efficient building to handle the environmental concerns because of its abundance.


2010 ◽  
Vol 29-32 ◽  
pp. 2789-2793
Author(s):  
Cheng Wen Yan ◽  
Jian Yao ◽  
Jin Xu

In the present study a GUI tool for the prediction of building energy performance based on a three-layered BP neural network and MATLAB was developed. The inputs for this tool are the 18 building envelope parameters. The outputs are building heating, cooling and total energy consumptions and the energy saving rate. Compared with the complicated mathematical equations, this tool provides a very easy and effective method for students to learn the effects of building envelope performance parameters on the building energy performance. Thus, this tool can be used in building physics and building energy efficiency courses for the design of energy efficient building.


2017 ◽  
Vol 12 (4) ◽  
pp. 70-88 ◽  
Author(s):  
Ajla Aksamija

This article discusses energy-efficient retrofitting design strategies for commercial office buildings, and examines their effect on energy consumption. The objective of the research was to study how to integrate passive design strategies and energy-efficient building systems to improve building performance, and reduce the energy consumption of existing buildings in three different climate types (cold, mixed and hot climates). First, properties of existing buildings were analyzed based on national CBECS database to determine typical characteristics of office buildings located in Chicago, Baltimore and Phoenix, including size, building envelope treatment and building systems. Then, fourteen different prototypes were developed, varying the building shape and orientation to represent different building stock, and energy modeling was conducted to establish energy usage baseline. Multiple design considerations were investigated based on extensive energy simulations and modeling, where low-impact and deep retrofits were considered. Low-impact strategies included improvements to the building envelope, lighting systems and optimization of HVAC systems operation (without upgrading heating and cooling equipment). Deep energy retrofits also included improvements to building envelope and lighting, and considered changes and improvements to HVAC systems (specifically, integration of radiant systems). Energy modeling was conducted for all prototypes, and results were obtained for the baseline (current energy usage), and energy usage considering low-impact design strategies and deep retrofits. A total of 126 energy models was developed, simulated and analyzed, providing a dataset that captured energy usage for investigated scenarios. The comparative analysis of simulation results was used to determine how specific techniques lead to energy savings in different climate types, as well as for buildings of various shapes and orientations.


Sign in / Sign up

Export Citation Format

Share Document