Breast Cancer Recognition by Support Vector Machine Combined with Daubechies Wavelet Transform and Principal Component Analysis

Author(s):  
Fangyuan Liu ◽  
Mackenzie Brown
2019 ◽  
Vol 3 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Mustafa H. Mohammed Alhabib ◽  
Mustafa Zuhaer Nayef Al-Dabagh ◽  
Firas H. AL-Mukhtar ◽  
Hussein Ibrahim Hussein

Facial analysis has evolved to be a process of considerable importance due to its consequence on the safety and security, either individually or generally on the society level, especially in personal identification. The paper in hand applies facial identification on a facial image dataset by examining partial facial images before allocating a set of distinctive characteristics to them. Extracting the desired features from the input image is achieved by means of wavelet transform. Principal component analysis is used for feature selection, which specifies several aspects in the input image; these features are fed to two stages of classification using a support vector machine and K-nearest neighborhood to classify the face. The images used to test the strength of the suggested method are taken from the well-known (Yale) database. Test results showed the eligibility of the system when it comes to identify images and assign the correct face and name.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Heping Li ◽  
Yu Ren ◽  
Fan Yu ◽  
Dongliang Song ◽  
Lizhe Zhu ◽  
...  

To facilitate the enhanced reliability of Raman-based tumor detection and analytical methodologies, an ex vivo Raman spectral investigation was conducted to identify distinct compositional information of healthy (H), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Then, principal component analysis-linear discriminant analysis (PCA-LDA) and principal component analysis-support vector machine (PCA-SVM) models were constructed for distinguishing spectral features among different tissue groups. Spectral analysis highlighted differences in levels of unsaturated and saturated lipids, carotenoids, protein, and nucleic acid between healthy and cancerous tissue and variations in the levels of nucleic acid, protein, and phenylalanine between DCIS and IDC. Both classification models were principal component analysis-linear discriminant analysis to be extremely efficient on discriminating tissue pathological types with 99% accuracy for PCA-LDA and 100%, 100%, and 96.7% for PCA-SVM analysis based on linear kernel, polynomial kernel, and radial basis function (RBF), respectively, while PCA-SVM algorithm greatly simplified the complexity of calculation without sacrificing performance. The present study demonstrates that Raman spectroscopy combined with multivariate analysis technology has considerable potential for improving the efficiency and performance of breast cancer diagnosis.


2019 ◽  
Vol 42 (7) ◽  
pp. 1301-1312
Author(s):  
Wen Wu ◽  
Shah Faisal

In recent years, with the development of artificial intelligence, data-driven methodologies have been widely studied in fault diagnosis and detection, since an increasing number of complexities of modern complex systems make the mechanism model information difficult to obtain. Especially in people’s health monitoring, it is very difficult to achieve the mechanism model. The existing challenges, such as huge amount of data, high data dimension, large noise interference, and so forth, make the applications of data-driven approaches more suitable. For the sake of solving the problems above, we present principal component analysis-support vector machine (PCA-SVM) method with different kernels to reduce data dimension, and two sets of breast-cancer data are utilized to verify the method. Additionally, support vector machine-recursive feature elimination (SVM-RFE), the original SVM with different kernels, PCA and modified PCA (MPCA) methods are also applied to diagnose malignant cancer in comparison with PCA-SVM. In experiments, PCA-SVM via radial basis function (RBF) kernel shows better performance than other methods, with the two breast cancer datasets obtained from the University of Wisconsin Hospital. Finally, PCA-SVM in this study uses only six principal components and obtains better accuracy (97.19%) than most of the previous studies.


Sign in / Sign up

Export Citation Format

Share Document