scholarly journals Exploring Cross-Site Networking in Large-Scale Distributed Projects

Author(s):  
Aivars Sablis ◽  
Darja Smite ◽  
Nils Brede Moe
Keyword(s):  
Author(s):  
Huan Yan ◽  
Xiangning Chen ◽  
Chen Gao ◽  
Yong Li ◽  
Depeng Jin

Existing web video systems recommend videos according to users' viewing history from its own website. However, since many users watch videos in multiple websites, this approach fails to capture these users' interests across sites. In this paper, we investigate the user viewing behavior in multiple sites based on a large scale real dataset. We find that user interests are comprised of cross-site consistent part and site-specific part with different degrees of the importance. Existing linear matrix factorization recommendation model has limitation in modeling such complicated interactions. Thus, we propose a model of Deep Attentive Probabilistic Factorization (DeepAPF) to exploit deep learning method to approximate such complex user-video interaction. DeepAPF captures both cross-site common interests and site-specific interests with non-uniform importance weights learned by the attentional network. Extensive experiments show that our proposed model outperforms by 17.62%, 7.9% and 8.1% with the comparison of three state-of-the-art baselines. Our study provides insight to integrate user viewing records from multiple sites via the trusted third party, which gains mutual benefits in video recommendation.


2021 ◽  
Author(s):  
Mengting Liu ◽  
Piyush Maiti ◽  
Sophia Thomopoulos ◽  
Alyssa Zhu ◽  
Yaqiong Chai ◽  
...  

AbstractLarge data initiatives and high-powered brain imaging analyses require the pooling of MR images acquired across multiple scanners, often using different protocols. Prospective cross-site harmonization often involves the use of a phantom or traveling subjects. However, as more datasets are becoming publicly available, there is a growing need for retrospective harmonization, pooling data from sites not originally coordinated together. Several retrospective harmonization techniques have shown promise in removing cross-site image variation. However, most unsupervised methods cannot distinguish between image-acquisition based variability and cross-site population variability, so they require that datasets contain subjects or patient groups with similar clinical or demographic information. To overcome this limitation, we consider cross-site MRI image harmonization as a style transfer problem rather than a domain transfer problem. Using a fully unsupervised deep-learning framework based on a generative adversarial network (GAN), we show that MR images can be harmonized by inserting the style information encoded from a reference image directly, without knowing their site/scanner labels a priori. We trained our model using data from five large-scale multi-site datasets with varied demographics. Results demonstrated that our styleencoding model can harmonize MR images, and match intensity profiles, successfully, without relying on traveling subjects. This model also avoids the need to control for clinical, diagnostic, or demographic information. Moreover, we further demonstrated that if we included diverse enough images into the training set, our method successfully harmonized MR images collected from unseen scanners and protocols, suggesting a promising novel tool for ongoing collaborative studies.


Author(s):  
Avinash Sudhodanan ◽  
Roberto Carbone ◽  
Luca Compagna ◽  
Nicolas Dolgin ◽  
Alessandro Armando ◽  
...  

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document