scholarly journals An Estimation Method of Intellectual Concentration State by Machine Learning of Physiological Indices

Author(s):  
Kaku Kimura ◽  
Shutaro Kunimasa ◽  
You Kusakabe ◽  
Hirotake Ishii ◽  
Hiroshi Shimoda
2021 ◽  
Vol 60 (6) ◽  
pp. 5779-5796
Author(s):  
Nashat Maher ◽  
G.A. Elsheikh ◽  
W.R. Anis ◽  
Tamer Emara

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3208 ◽  
Author(s):  
Liangju Wang ◽  
Yunhong Duan ◽  
Libo Zhang ◽  
Tanzeel U. Rehman ◽  
Dongdong Ma ◽  
...  

The normalized difference vegetation index (NDVI) is widely used in remote sensing to monitor plant growth and chlorophyll levels. Usually, a multispectral camera (MSC) or hyperspectral camera (HSC) is required to obtain the near-infrared (NIR) and red bands for calculating NDVI. However, these cameras are expensive, heavy, difficult to geo-reference, and require professional training in imaging and data processing. On the other hand, the RGBN camera (NIR sensitive RGB camera, simply modified from standard RGB cameras by removing the NIR rejection filter) have also been explored to measure NDVI, but the results did not exactly match the NDVI from the MSC or HSC solutions. This study demonstrates an improved NDVI estimation method with an RGBN camera-based imaging system (Ncam) and machine learning algorithms. The Ncam consisted of an RGBN camera, a filter, and a microcontroller with a total cost of only $70 ~ 85. This new NDVI estimation solution was compared with a high-end hyperspectral camera in an experiment with corn plants under different nitrogen and water treatments. The results showed that the Ncam with two-band-pass filter achieved high performance (R2 = 0.96, RMSE = 0.0079) at estimating NDVI with the machine learning model. Additional tests showed that besides NDVI, this low-cost Ncam was also capable of predicting corn plant nitrogen contents precisely. Thus, Ncam is a potential option for MSC and HSC in plant phenotyping projects.


Author(s):  
Wang Han ◽  
Xiaoling Zhang ◽  
Xiesi Huang ◽  
Haiqing Li

This paper presents a time-dependent reliability estimation method for engineering system based on machine learning and simulation method. Due to the stochastic nature of the environmental loads and internal incentive, the physics of failure for mechanical system is complex, and it is challenging to include uncertainties for the physical modeling of failure in the engineered system’s life cycle. In this paper, an efficient time-dependent reliability assessment framework for mechanical system is proposed using a machine learning algorithm considering stochastic dynamic loads in the mechanical system. Firstly, stochastic external loads of mechanical system are analyzed, and the finite element model is established. Secondly, the physics of failure mode of mechanical system at a time location is analyzed, and the distribution of time realization under each load condition is calculated. Then, the distribution of fatigue life can be obtained based on high-cycle fatigue theory. To reduce the calculation cost, a machine learning algorithm is utilized for physical modeling of failure by integrating uniform design and Gaussian process regression. The probabilistic fatigue life of gear transmission system under different load conditions can be calculated, and the time-varying reliability of mechanical system is further evaluated. Finally, numerical examples and the fatigue reliability estimation of gear transmission system is presented to demonstrate the effectiveness of the proposed method.


2017 ◽  
Author(s):  
Shutaro Kunimasa ◽  
◽  
Kyoichi Seo ◽  
Hiroshi Shimoda ◽  
Hirotake Ishii ◽  
...  

Author(s):  
Masahiro Oda ◽  
Takayuki Kitasaka ◽  
Kazuhiro Furukawa ◽  
Ryoji Miyahara ◽  
Yoshiki Hirooka ◽  
...  

Author(s):  
Chang-Shing Lee ◽  
Mei-Hui Wang ◽  
Yi-Lin Tsai ◽  
Wei-Shan Chang ◽  
Marek Reformat ◽  
...  

The currently observed developments in Artificial Intelligence (AI) and its influence on different types of industries mean that human-robot cooperation is of special importance. Various types of robots have been applied to the so-called field of Edutainment, i.e., the field that combines education with entertainment. This paper introduces a novel fuzzy-based system for a human-robot cooperative Edutainment. This co-learning system includes a brain-computer interface (BCI) ontology model and a Fuzzy Markup Language (FML)-based Reinforcement Learning Agent (FRL-Agent). The proposed FRL-Agent is composed of (1) a human learning agent, (2) a robotic teaching agent, (3) a Bayesian estimation agent, (4) a robotic BCI agent, (5) a fuzzy machine learning agent, and (6) a fuzzy BCI ontology. In order to verify the effectiveness of the proposed system, the FRL-Agent is used as a robot teacher in a number of elementary schools, junior high schools, and at a university to allow robot teachers and students to learn together in the classroom. The participated students use handheld devices to indirectly or directly interact with the robot teachers to learn English. Additionally, a number of university students wear a commercial EEG device with eight electrode channels to learn English and listen to music. In the experiments, the robotic BCI agent analyzes the collected signals from the EEG device and transforms them into five physiological indices when the students are learning or listening. The Bayesian estimation agent and fuzzy machine learning agent optimize the parameters of the FRL agent and store them in the fuzzy BCI ontology. The experimental results show that the robot teachers motivate students to learn and stimulate their progress. The fuzzy machine learning agent is able to predict the five physiological indices based on the eight-channel EEG data and the trained model. In addition, we also train the model to predict the other students’ feelings based on the analyzed physiological indices and labeled feelings. The FRL agent is able to provide personalized learning content based on the developed human and robot cooperative edutainment approaches. To our knowledge, the FRL agent has not applied to the teaching fields such as elementary schools before and it opens up a promising new line of research in human and robot co-learning. In the future, we hope the FRL agent will solve such an existing problem in the classroom that the high-performing students feel the learning contents are too simple to motivate their learning or the low-performing students are unable to keep up with the learning progress to choose to give up learning.


Author(s):  
Yihuan Li ◽  
Kang Li ◽  
Xuan Liu ◽  
Li Zhang

Lithium-ion batteries have been widely used in electric vehicles, smart grids and many other applications as energy storage devices, for which the aging assessment is crucial to guarantee their safe and reliable operation. The battery capacity is a popular indicator for assessing the battery aging, however, its accurate estimation is challenging due to a range of time-varying situation-dependent internal and external factors. Traditional simplified models and machine learning tools are difficult to capture these characteristics. As a class of deep neural networks, the convolutional neural network (CNN) is powerful to capture hidden information from a huge amount of input data, making it an ideal tool for battery capacity estimation. This paper proposes a CNN-based battery capacity estimation method, which can accurately estimate the battery capacity using limited available measurements, without resorting to other offline information. Further, the proposed method only requires partial charging segment of voltage, current and temperature curves, making it possible to achieve fast online health monitoring. The partial charging curves have a fixed length of 225 consecutive points and a flexible starting point, thereby short-term charging data of the battery charged from any initial state-of-charge can be used to produce accurate capacity estimation. To employ CNN for capacity estimation using partial charging curves is however not trivial, this paper presents a comprehensive approach covering time series-to-image transformation, data segmentation, and CNN configuration. The CNN-based method is applied to two battery degradation datasets and achieves root mean square errors (RMSEs) of less than 0.0279 Ah (2.54%) and 0.0217 Ah (2.93% ), respectively, outperforming existing machine learning methods.


2009 ◽  
Vol 2009.5 (0) ◽  
pp. 181-182
Author(s):  
Hirohito IDE ◽  
Masahiko OSADA ◽  
Guillaume LOPEZ ◽  
Masaki SHUZO ◽  
Jean-Jacques DELAUNAY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document