Structural Setting and Tectonic Evolution of the Gulf of Suez, NW Red Sea and Gulf of Aqaba Rift Systems

Author(s):  
Adel R. Moustafa ◽  
Samir M. Khalil
Zootaxa ◽  
2018 ◽  
Vol 4509 (1) ◽  
pp. 1 ◽  
Author(s):  
DANIEL GOLANI ◽  
RONALD FRICKE

The current checklist provides for each species of the Red Sea its records in the Gulf of Suez, Gulf of Aqaba, Red Sea main basin and its general distribution.This new checklist of Red Sea fishes enumerates 1207 species, representing 164 families. Of these, 797 species were recorded from the Gulf of Aqaba and 339 from the Gulf of Suez. The number of species from the Gulf of Suez is evidently lower than the actual number not including 27 Lessepsian (Red Sea) migrants to the Mediterranean that most likely occur in the Gulf. The current list includes 73 species that were newly described for science since the last checklist of 2010. The most specious Osteichthyes families are: Gobiidae (134 species), Labridae (66), Apogonidae (59), Serranidae (including Anthiadinae) (44), Blenniidae (42), Carangidae (38), Muraenidae (36), Pomacentridae (35), Syngnathidae (34), Scorpaenidae (24) and Lutjanidae (23). Among the families of Chondrichthyes, the most specious families are the Carcharhinidae (18 species) and Dasyatidae (11). The total number of endemic species in the Red Sea is 174 species, of these, 34 species are endemic to the Gulf of Aqaba and 8 to the Gulf of Suez. 


Tectonics ◽  
1990 ◽  
Vol 9 (3) ◽  
pp. 441-465 ◽  
Author(s):  
Jean-Jacques Jarrige ◽  
Philippe Ott d'Estevou ◽  
Pierre F. Burollet ◽  
Christian Montenat ◽  
Philippe Prat ◽  
...  

2001 ◽  
Vol 187 (1) ◽  
pp. 453-473 ◽  
Author(s):  
S.M. Khalil ◽  
K.R. McClay

2021 ◽  
Author(s):  
Ken McClay ◽  
Bill Bosworth ◽  
Samir Khalil ◽  
Marco Ligi ◽  
Danny Stockli

<p>The Gulf of Suez and the Northern Red Sea form the northwestern sector of the Afro-Arabian rift system.  Studies of outstanding outcrops of rift fault systems and syntectonic strata integrated with sub-surface data together with thermo-chronological studies indicate that the Gulf of Suez - Northern Red Sea rift system initiated at around the Oligocene to Miocene transition (24 to 23 Ma).  A regional NW-SE trending Oligocene-Miocene (~23 Ma) alkali basalt dike swarm and basalt flows near Cairo, appears to mark the onset of crustal-scale extension and continental rifting.  These dikes and scarce local flows, are interbedded with the oldest siliciclastic syn-rift strata (Aquitanian Nukhul Fm.), and are associated with the oldest recognized extensional faulting in the Red Sea.  Bedrock thermochronometric results from the Gulf of Suez and both margins of the Red Sea also point to a latest Oligocene onset of major normal faulting and rift flank exhumation and large-magnitude early Miocene extension along the entire length of the Red Sea rift.  The early phase of rifting produced complex, discontinuous fault patterns with very high rates of fault block rotation, distinct sub-basins with alternating regional dip domains separated by well-defined accommodation zones.  Sedimentary facies were laterally and vertically complex and dominated by marginal to shallow marine siliciclastics of the Abu Zenima, Nukhul and Nakheil Formations.  Neotethyan faunas appeared throughout all of the sub-basins at this time.  During the Early Burdigalian (~20 Ma) tectonically-driven subsidence accelerated and was accompanied by a concordant increase in denudation and uplift of the rift shoulders.  The intra-rift fault networks coalesced into through-going structures and extension became progressively more focused along the rift axis.  This reconfiguration resulted in more laterally continuous depositional facies and the moderate-to-deep marine deposits of the Rudeis, Kareem and Ranga Formations.<br>At the early Middle Miocene (~14 Ma) onset of the left-lateral Gulf of Aqaba transform fault system marked dramatic changes in rift kinematics and sedimentary depositional environments.  The Gulf of Suez became isolated from the active northern Red Sea rift, with a switch from orthogonal to oblique rifting and to hyperextension in the northern Red Sea.  The previous open marine seaway was replaced by an extensive evaporitic basin along the entire length of the rift from the central Gulf of Suez to Yemen/Eritrea.  In Egypt these evaporites are ascribed to the Belayim, South Gharib, Zeit and Abu Dabbab Formations.  Evaporite deposition continued to dominate until the end of the Miocene (~5 Ma) when a subaerial unconformity developed across most of the basins. With the onset of seafloor spreading in the southern Red Sea, Indian Ocean marine waters re-entered through the Bab el Mandab in the earliest Pliocene and re-established open marine conditions.  In the northern Red Sea well and seismic data demonstrate that continental crust extends at least several tens of kilometers offshore.  The northern Red Sea is a highly extended non-volcanic rift and true, laterally integrated sea-floor spreading has not yet developed.</p>


Author(s):  
William Bosworth ◽  
Marco Taviani ◽  
Najeeb M. A. Rasul
Keyword(s):  
Red Sea ◽  

2013 ◽  
Vol 46 ◽  
Author(s):  
Sunil Kumar Dwivedi ◽  
Daigoro Hayashi Hayashi

Northeast Africa forms the northernmost extension of the East African Rift System and is considered one of the geodynamically active regions in the Earth. The Red Sea, Gulf of Suez, Gulf of Aqaba, and Dead Sea transform are the most prominent tectonic features in the region. Despite the motion of African and Arabian Plates being well-established, contribution of these plates to the origin of stress field in the Gulf of Suez has been under discussion. The main debate is on the controlling factors for the geodynamic origin of the Suez rift basin. The factors, either the present-day stress field is originated due to the Gulf of Suez rift itself or due to the influence of nearby tectonic boundaries, is under question. An attempt has been made to model the stress field of the area by 20 plane stress finite-element (FE) modeling incorporating realistic rock parameters and velocities for African and Arabian Plates. The modeled maximum horizontal stress (σHmax and minimum horizontal stress (σHmin) directions correlate well with observed stress indicators from the world stress map (WSM), focal mechanism solutions (FMS) of earthquakes, in-situ stress measurements, and geological stress information; and displacement field correlate well with GPS data of the region. Modeling result reveals that the present-day stress field in the Gulf of Suez is emerged from coeval influence of superimposed forces acting from rifting processes in the Red Sea, Gulf of Aqaba, and Dead Sea transform.


GeoArabia ◽  
2001 ◽  
Vol 6 (2) ◽  
pp. 211-230 ◽  
Author(s):  
John C. Dolson ◽  
Mark V. Shann ◽  
Sayed I. Matbouly ◽  
Hussein Hammouda ◽  
Rashed M. Rashed

ABSTRACT Since the onshore discovery of oil in the Eastern Desert in 1886, the petroleum industry in Egypt has accumulated reserves of more than 15.5 billion barrels of oil equivalent. An understanding of the tectono-stratigraphic history of each major basin, combined with drilling history and field-size distributions, justifies the realization of the complete replacement of these reserves in the coming decades. Most of the increase in reserves will be the result of offshore exploration. In addition to the 25 trillion cubic feet already discovered, the offshore Mediterranean may hold 64 to 84 trillion cubic feet and the onshore Western Desert may contribute 15 to 30 trillion cubic feet in new gas resources. Many of the new fields are expected to be in the giant-field class that contains greater than 100 million barrels of oil equivalent. Challenges include sub-salt imaging, market constraints for predominantly gas resources and economic constraints imposed by the high cost of development of the current deep-water gas discoveries that are probably unique worldwide. The offshore Gulf of Suez may yield an additional 1.5 to 3.3 billion barrels of oil equivalent, but it continues to be technologically constrained by poor-quality seismic data. Advances in multiple suppression and development of new ‘off-structure’ play concepts with higher quality seismic data should result in continual new pool discoveries. Offshore frontier exploration includes the Red Sea rift (currently under reassessment with area-wide 3-D surveys) and the Gulf of Aqaba. Deep-water and sub-salt imaging remain significant challenges to be overcome. Despite a relatively complex history, the Phanerozoic geological framework of Egypt is extremely prospective for oil and gas. Eight major tectono-stratigraphic events are: (1) Paleozoic craton; (2) Jurassic rifting; (3) Cretaceous passive margin; (4) Cretaceous Syrian Arc deformation and foreland transgressions; (5) Oligocene-Miocene Gulf of Suez rifting; (6) Miocene Red Sea opening; (7) the Messinian salinity crisis; and (8) Pliocene-Pleistocene delta progradation. Each of these events has created multiple reservoir and seal combinations. Source rocks occur from the Paleozoic through to the Pliocene and petroleum is produced from reservoirs that range in age from Precambrian to Pleistocene. The offshore Mediterranean, Gulf of Suez and Red Sea/Gulf of Aqaba contain significant exploration potential and will provide substantial reserve replacements in the coming decades.


1988 ◽  
Vol 153 (1-4) ◽  
pp. 209-220 ◽  
Author(s):  
N Lyberis

2012 ◽  
Vol 4 (3) ◽  
Author(s):  
Salah Saleh ◽  
Ahmed Saleh

AbstractThe aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°–50°W, N10°–20°W and N10°–20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ∼10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°–50° east that is probably due to the Syrian Arc system. Finally, our results are extremely coincided with the previous stress directions derived from geological, seismological and tectonic analysis in northern Red Sea rift, Gulf of Suez and Sinai regions.


Sign in / Sign up

Export Citation Format

Share Document