The Influence of Stretch Range on the Hyperelastic Material Model Parameters for Pig’s Skin with Consideration of Specimen Taken Direction

Author(s):  
Sylwia Łagan ◽  
Aneta Liber-Kneć
Author(s):  
Larry D. Carbary ◽  
Jon H. Kimberlain ◽  
John C. Oliva

Hyperelastic material model parameters have been developed to capture the behavior of silicone based construction sealants. Modern commercially available finite element analysis software makes it quite accessible to develop hyperelastic material models, automating the process of curve-fitting experimental lab data to specific hyperelastic formulations. However, the process of selecting a particular hyperelastic model from those supported is not straightforward. Here, a series of lab experiments are employed to guide the selection of the hyperelastic model that best describes various structural silicone glazings. A total of 10 different sealants are characterized with discussion of variations among the models. Comparisons of the best performing hyperelastic models for the different sealants are presented. Finally, an application is described in which these hyperelastic models have begun to be implemented in practice.


2021 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Dimitrios P. Sokolis

Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


Author(s):  
Marvin Hardt ◽  
Thomas Bergs

AbstractAnalyzing the chip formation process by means of the finite element method (FEM) is an established procedure to understand the cutting process. For a realistic simulation, different input models are required, among which the material model is crucial. To determine the underlying material model parameters, inverse methods have found an increasing acceptance within the last decade. The calculated model parameters exhibit good validity within the domain of investigation, but suffer from their non-uniqueness. To overcome the drawback of the non-uniqueness, the literature suggests either to enlarge the domain of experimental investigations or to use more process observables as validation parameters. This paper presents a novel approach merging both suggestions: a fully automatized procedure in conjunction with the use of multiple process observables is utilized to investigate the non-uniqueness of material model parameters for the domain of cutting simulations. The underlying approach is two-fold: Firstly, the accuracy of the evaluated process observables from FE simulations is enhanced by establishing an automatized routine. Secondly, the number of process observables that are considered in the inverse approach is increased. For this purpose, the cutting force, cutting normal force, chip temperature, chip thickness, and chip radius are taken into account. It was shown that multiple parameter sets of the material model can result in almost identical simulation results in terms of the simulated process observables and the local material loads.


2014 ◽  
Vol 8 (3) ◽  
pp. 136-140 ◽  
Author(s):  
Maciej Ryś

Abstract In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2241 ◽  
Author(s):  
Tomáš Hána ◽  
Tomáš Janda ◽  
Jaroslav Schmidt ◽  
Alena Zemanová ◽  
Michal Šejnoha ◽  
...  

An accurate material representation of polymeric interlayers in laminated glass panes has proved fundamental for a reliable prediction of their response in both static and dynamic loading regimes. This issue is addressed in the present contribution by examining the time–temperature sensitivity of the shear stiffness of two widely used interlayers made of polyvinyl butyral (TROSIFOL BG R20) and ethylene-vinyl acetate (EVALAM 80-120). To that end, an experimental program has been executed to compare the applicability of two experimental techniques, (i) dynamic torsional tests and (ii) dynamic single-lap shear tests, in providing data needed in a subsequent calibration of a suitable material model. Herein, attention is limited to the identification of material parameters of the generalized Maxwell chain model through the combination of linear regression and the Nelder–Mead method. The choice of the viscoelastic material model has also been supported experimentally. The resulting model parameters confirmed a strong material variability of both interlayers with temperature and time. While higher initial shear stiffness was observed for the polyvinyl butyral interlayer in general, the ethylene-vinyl acetate interlayer exhibited a less pronounced decay of stiffness over time and a stiffer response in long-term loading.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Abhi Sirimamilla ◽  
Hua Ye ◽  
Yinan Wu

Using finite element (FE) analysis to simulate drop impact is widely adopted by the consumer electronics industry in the design process of portable devices. Most of such simulations model impact surface as a rigid or simple elastic surface. While this approach is valid for many common hard surfaces such as wood, tile, or concrete, it often does not provide a realistic risk assessment if the impact surface is a soft surface such as carpet. This paper describes a methodology to create a material model for carpeted impact surface that is suited for FE drop simulation. A multilayer hyperelastic–viscoelastic material model is used to model the mechanical response of the carpet under mechanical impact. Quasi-static and impact testing on the industrial carpet were performed to calibrate the model parameters with the help of optimization. Validation of the model was done by comparing the simulation predictions with measurements from the impact tests performed at different heights. Much better correlation between experimental measurements and simulation predictions were observed when using the multilayer hyper-viscoelastic model for carpet than using a single layer homogenous model. This approach can provide a better estimate and a more accurate representation for device drop risk on carpeted surfaces for design and development of portable products. The methodology can also be used to derive material models for other similar impact surfaces.


2016 ◽  
Vol 250 ◽  
pp. 197-202 ◽  
Author(s):  
Michal Stopel Stopel ◽  
Dariusz Skibicki

Feasibility analysis of replacing split Hopkinson bars test by Charpy impact test for determination of Johnson-Cook’s material model parameters. The results show that the Charpy impact test may, due to the strain rates achieved, successfully replace the mentioned experimental test. Moreover the results shows that some further studies should be conducted to improve efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document