Peak Exercise Parameters

Author(s):  
Jonathan Rhodes
Keyword(s):  
1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


2000 ◽  
Vol 55 (6) ◽  
pp. 335-339 ◽  
Author(s):  
Mehmet ÜLGEN ◽  
Aziz KARADEDE ◽  
Sait ALAN ◽  
A. Vahip TEMAMOĞULARI ◽  
Aziz KARABULUT ◽  
...  

Respiration ◽  
2021 ◽  
pp. 369-377
Author(s):  
Michael Westhoff ◽  
Patric Litterst ◽  
Ralf Ewert

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a distinct entity among fibrosing lung diseases with a high risk for lung cancer and pulmonary hypertension (PH). Notably, concomitant PH was identified as a negative prognostic indicator that could help with early diagnosis to provide important information regarding prognosis. Objectives: The current study aimed to determine whether cardiopulmonary exercise testing (CPET) can be helpful in differentiating patients having CPFE with and without PH. Methods: Patients diagnosed with CPFE in 2 German cities (Hemer and Greifswald) over a period of 10 years were included herein. CPET parameters, such as peak oxygen uptake (peak VO2), functional dead space ventilation (VDf/VT), alveolar-arterial oxygen difference (AaDO2), arterial-end-tidal CO2 difference [P(a-ET)CO2] at peak exercise, and the minute ventilation-carbon dioxide production relationship (VE/VCO2 slope), were compared between patients with and without PH. Results: A total of 41 patients with CPET (22 with PH, 19 without PH) were analyzed. Right heart catheterization was performed in 15 of 41 patients without clinically relevant complications. Significant differences in peak VO2 (861 ± 190 vs. 1,397 ± 439 mL), VO2/kg body weight/min (10.8 ± 2.6 vs. 17.4 ± 5.2 mL), peak AaDO2 (72.3 ± 7.3 vs. 46.3 ± 14.2 mm Hg), VE/VCO2 slope (70.1 ± 31.5 vs. 39.6 ± 9.6), and peak P(a-ET)tCO2 (13.9 ± 3.5 vs. 8.1 ± 3.6 mm Hg) were observed between patients with and without PH (p < 0.001). Patients with PH had significantly higher VDf/VT at rest, VT1, and at peak exercise (65.6 ± 16.8% vs. 47.2 ± 11.6%; p < 0.001) than those without PH. A cutoff value of 44 for VE/VCO2 slope had a sensitivity and specificity of 94.7 and 72.7%, while a cutoff value of 11 mm Hg for P(a-ET)CO2 in combination with peak AaDO2 >60 mm Hg had a specificity and sensitivity of 95.5 and 84.2%, respectively. Combining peak AaDO2 >60 mm Hg with peak VO2/body weight/min <16.5 mL/kg/min provided a sensitivity and specificity of 100 and 95.5%, respectively. Conclusion: This study provided initial data on CPET among patients having CPFE with and without PH. CPET can help noninvasively detect PH and identify patients at risk. AaDO2 at peak exercise, VE/VCO2 slope, peak P(a-ET)CO2, and peak VO2 were parameters that had high sensitivity and, when combined, high specificity.


1994 ◽  
Vol 77 (3) ◽  
pp. 1108-1115 ◽  
Author(s):  
D. E. Larson ◽  
R. L. Hesslink ◽  
M. I. Hrovat ◽  
R. S. Fishman ◽  
D. M. Systrom

To determine how diet modulates short-term exercise capacity, skeletal muscle pH and bioenergetic state were examined by 31P-magnetic resonance spectroscopy in nine healthy volunteers. Subjects performed incremental quadriceps exercise to exhaustion after 5 days of high-carbohydrate (HCHO) or high-fat (HFAT) diet randomly assigned in crossover fashion and separated by a 2.5-day period of ad libitum mixed diet. Simultaneous measurements were made of pulmonary gas exchange, minute ventilation, and quadriceps muscle pH and phosphorylation potential. At rest and peak exercise, respiratory exchange ratio and minute ventilation were higher after HCHO than after HFAT (P < 0.05), reflecting greater CHO utilization. Peak O2 consumption (VO2) was not increased after HCHO (P > 0.05), but exercise duration was (339 +/- 34 s for HCHO vs. 308 +/- 25 s for HFAT; P < 0.05). HCHO was associated with a blunted early fall of phosphocreatine (PCr)/Pi vs. VO2 (-4.1 +/- 0.7 x 10(-2) min/ml for HCHO vs. -5.6 +/- 1.2 x 10(-2) min/ml for HFAT; P < 0.05). On both study days, the slope of PCr/Pi vs. VO2, before and after the PCr threshold, was correlated with exercise time. The results suggest that a diet rich in CHO improves exercise efficiency through beneficial effects on intracellular phosphorylation potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroki Tashiro ◽  
Koichiro Takahashi ◽  
Masahide Tanaka ◽  
Hironori Sadamatsu ◽  
Yuki Kurihara ◽  
...  

AbstractDecreasing exercise tolerance is one of the key features related to a poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cardiopulmonary exercise testing (CPET) is useful for evaluating exercise tolerance. The present study was performed to clarify the correlation between exercise tolerance and clinical parameters, focusing especially on the cross-sectional area (CSA) of skeletal muscle. The present study investigated 69 patients with COPD who underwent CPET. The correlations between oxygen uptake ($${{\dot{\text{V}} \text{O}}}_{2}$$ V ˙ O 2 ) at peak exercise and clinical parameters of COPD, including skeletal muscle area measured using single-section axial computed tomography (CT), were evaluated. The COPD assessment test score (ρ = − 0.35, p = 0.02) was weakly correlated with $${{\dot{\text{V}} \text{O}}}_{2}$$ V ˙ O 2 at peak exercise. In addition, forced expiratory volume in one second (FEV1) (ρ = 0.39, p = 0.0009), FEV1/forced vital capacity (ρ = 0.33, p = 0.006), and the CSA of the pectoralis muscles (PMs) (ρ = 0.36, p = 0.007) and erector spinae muscles (ECMs) (ρ = 0.39, p = 0.003) were correlated with $${{\dot{\text{V}} \text{O}}}_{2}$$ V ˙ O 2 at peak exercise. Multivariate analysis adjusted by age and FEV1 indicated that PMCSA was weakly correlated after adjustment (β value [95% confidence interval] 0.175 [0.03–0.319], p = 0.02). In addition, ECMCSA tended to be correlated, but not significantly after adjustment (0.192 [− 0.001–0.385] p = 0.052). The COPD assessment test, FEV1, FEV1/FVC, PMCSA, and ECMCSA were significantly correlated with $${{\dot{\text{V}} \text{O}}}_{2}$$ V ˙ O 2 at peak exercise.


2015 ◽  
Vol 119 (9) ◽  
pp. 998-1006 ◽  
Author(s):  
Julia M. Cory ◽  
Michele R. Schaeffer ◽  
Sabrina S. Wilkie ◽  
Andrew H. Ramsook ◽  
Joseph H. Puyat ◽  
...  

Understanding sex differences in the qualitative dimensions of exertional dyspnea may provide insight into why women are more affected by this symptom than men. This study explored the evolution of the qualitative dimensions of dyspnea in 70 healthy, young, physically active adults (35 M and 35 F). Participants rated the intensity of their breathing discomfort (Borg 0-10 scale) and selected phrases that best described their breathing from a standardized list (work/effort, unsatisfied inspiration, and unsatisfied expiration) throughout each stage of a symptom-limited incremental-cycle exercise test. Following exercise, participants selected phrases that described their breathing at maximal exercise from a list of 15 standardized phrases. Intensity of breathing discomfort was significantly higher in women for a given ventilation, but differences disappeared when ventilation was expressed as a percentage of maximum voluntary ventilation. The dominant qualitative descriptor in both sexes throughout exercise was increased work/effort of breathing. At peak exercise, women were significantly more likely to select the following phrases: “my breathing feels shallow,” “I cannot get enough air in,” “I cannot take a deep breath in,” and “my breath does not go in all the way.” Women adopted a more rapid and shallow breathing pattern and had significantly higher end-inspiratory lung volumes relative to total lung capacity throughout exercise relative to men. These findings suggest that men and women do not differ in their perceived quality of dyspnea during submaximal exercise, but subjective differences appear at maximal exercise and may be related, at least in part, to underlying sex differences in breathing patterns and operating lung volumes during exercise.


2017 ◽  
Vol 20 (4) ◽  
pp. 806-808 ◽  
Author(s):  
Pieter Martens ◽  
Frederik H. Verbrugge ◽  
Petra Nijst ◽  
Matthias Dupont ◽  
Wilfried Mullens

1993 ◽  
Vol 6 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Harvey S. Hecht ◽  
Larry DeBord ◽  
Nancy Sotomayor ◽  
Richard Shaw ◽  
Robert Dunlap ◽  
...  

Author(s):  
Bradley J. Petek ◽  
Sarah K. Gustus ◽  
Timothy W. Churchill ◽  
J. Sawalla Guseh ◽  
Garrett Loomer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document