Social Trusted D2D Seed Node Cluster Generation Strategy

Author(s):  
Weifeng Lu ◽  
Xiaoqiang Ren ◽  
Jia Xu ◽  
Siguang Chen ◽  
Lijun Yang ◽  
...  
Keyword(s):  
2012 ◽  
Vol E95-C (4) ◽  
pp. 534-545 ◽  
Author(s):  
Wei ZHONG ◽  
Takeshi YOSHIMURA ◽  
Bei YU ◽  
Song CHEN ◽  
Sheqin DONG ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Koshiro Nishimoto ◽  
Tsugio Seki ◽  
Yuichiro Hayashi ◽  
Shuji Mikami ◽  
Ghaith Al-Eyd ◽  
...  

Background. The immunohistochemical detection of aldosterone synthase (CYP11B2) and steroid 11β-hydroxylase (CYP11B1) has enabled the identification of aldosterone-producing cell clusters (APCCs) in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time.Purposes. To investigate changes in human adrenocortical zonation with age.Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, %) and the number of APCCs (NOA, APCCs/mm2) were calculated by four examiners. Average values were used in statistical analyses.Results. Adrenals under 11 years old had layered zona glomerulosa (ZG) and zona fasciculata (ZF) without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative) layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals.Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


2010 ◽  
Author(s):  
Alexander V. Bulgakov ◽  
Anton B. Evtushenko ◽  
Yuri G. Shukhov ◽  
Igor Ozerov ◽  
Wladimir Marine ◽  
...  

2019 ◽  
Vol 30 (2) ◽  
pp. 1-26
Author(s):  
Lei Li ◽  
Yuqi Chu ◽  
Guanfeng Liu ◽  
Xindong Wu

Along with the fast development of network applications, network research has attracted more and more attention, where one of the most important research directions is networked multi-label classification. Based on it, unknown labels of nodes can be inferred by known labels of nodes in the neighborhood. As both the scale and complexity of networks are increasing, the problems of previously neglected system overhead are turning more and more seriously. In this article, a novel multi-objective optimization-based networked multi-label seed node selection algorithm (named as MOSS) is proposed to improve both the prediction accuracy for unknown labels of nodes from labels of seed nodes during classification and the system overhead for mining the labels of seed nodes with third parties before classification. Compared with other algorithms on several real networked data sets, MOSS algorithm not only greatly reduces the system overhead before classification but also improves the prediction accuracy during classification.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Christian Korfhage ◽  
Evelyn Fricke ◽  
Andreas Meier ◽  
Andreas Geipel ◽  
Mark Baltes ◽  
...  

Abstract Generation of monoclonal DNA clusters on a surface is a useful method for digital nucleic acid detection applications (e.g. microarray or next-generation sequencing). To obtain sufficient copies per cluster for digital detection, the single molecule bound to the surface must be amplified. Here we describe ClonalRCA, a rolling-circle amplification (RCA) method for the generation of monoclonal DNA clusters based on forward and reverse primers immobilized on the surface. No primer in the reaction buffer is needed. Clusters formed by ClonalRCA comprise forward and reverse strands in multiple copies tethered to the surface within a cluster of micrometer size. Single stranded circular molecules are used as a target to create a cluster with about 10 000 forward and reverse strands. The DNA strands are available for oligonucleotide hybridization, primer extension and sequencing.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Woojoo Lee ◽  
Andrey Alexeyenko ◽  
Maria Pernemalm ◽  
Justine Guegan ◽  
Philippe Dessen ◽  
...  

Biological heterogeneity is common in many diseases and it is often the reason for therapeutic failures. Thus, there is great interest in classifying a disease into subtypes that have clinical significance in terms of prognosis or therapy response. One of the most popular methods to uncover unrecognized subtypes is cluster analysis. However, classical clustering methods such ask-means clustering or hierarchical clustering are not guaranteed to produce clinically interesting subtypes. This could be because the main statistical variability—the basis of cluster generation—is dominated by genes not associated with the clinical phenotype of interest. Furthermore, a strong prognostic factor might be relevant for a certain subgroup but not for the whole population; thus an analysis of the whole sample may not reveal this prognostic factor. To address these problems we investigate methods to identify and assess clinically interesting subgroups in a heterogeneous population. The identification step uses a clustering algorithm and to assess significance we use a false discovery rate- (FDR-) based measure. Under the heterogeneity condition the standard FDR estimate is shown to overestimate the true FDR value, but this is remedied by an improved FDR estimation procedure. As illustrations, two real data examples from gene expression studies of lung cancer are provided.


2001 ◽  
Vol 169-170 ◽  
pp. 380-386 ◽  
Author(s):  
Naoaki Saito ◽  
Kazuyoshi Koyama ◽  
Mitsumori Tanimoto

Sign in / Sign up

Export Citation Format

Share Document