On the automatic calibration of redundantly actuated cable-driven parallel robots

Author(s):  
Han Yuan ◽  
Yongqing Zhang ◽  
Wenfu Xu
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Naser Mostashiri ◽  
Jaspreet Dhupia ◽  
Alexander Verl ◽  
John Bronlund ◽  
Weiliang Xu

Abstract Inverse dynamics solution of redundantly actuated parallel robots (RAPRs) requires redundancy resolution methods. In this paper, the Lagrange’s equations of the second kind are used to derive governing equations of a chewing RAPR. Jacobian analysis of the RAPR is presented. As redundancy resolutions, two different optimization cost functions corresponding to specific neuromuscular objectives, which are minimization of effort of the muscles of mastication and temporomandibular joints (TMJs) loads, are used to find the RAPR’s optimized actuation torque distributions. The actuation torques under the influence of experimentally determined dynamic chewing forces on molar teeth reproduced from a separate chewing experiment are calculated for realistic in vitro simulation of typical human chewing. These actuation torques are applied to the RAPR with a distributed-computed-torque proportional-derivative control scheme, allowing the RAPR’s mandible to follow a human subject’s chewing trajectory. TMJs loads are measured by force sensors, which are comparable with the computed loads from theoretical formulation. The TMJs loads for the two optimization cost functions are measured while the RAPR is chewing 3 g of peanuts on its left molars. Maximum and mean of the recorded loads on the left TMJ were higher in both cases. Moreover, the maximum and mean of the recorded loads on both TMJs were smaller for the cost function minimizing the TMJs loads. These results demonstrate validity of the model, suggesting the RAPR as a potential TMJ loads measurement tool to study the chewing characteristics of patients suffering from pain in TMJs.


2019 ◽  
Vol 9 (11) ◽  
pp. 2182 ◽  
Author(s):  
Han Yuan ◽  
Xianghui You ◽  
Yongqing Zhang ◽  
Wenjing Zhang ◽  
Wenfu Xu

Cable-driven parallel robots are suitable candidates for rehabilitation due to their intrinsic flexibility and adaptability, especially considering the safety of human–robot interaction. However, there are still some challenges to apply cable-driven parallel robots to rehabilitation, one of which is the geometric calibration. This paper proposes a new automatic calibration method that is applicable for cable-driven parallel rehabilitation robots. The key point of this method is to establish the mapping between the unknown parameters to be calibrated and the parameters that could be measured by the inner sensors and then use least squares algorithm to find the solutions. Specifically, the unknown parameters herein are the coordinates of the attachment points, and the measured parameters are the lengths of the redundant cables. Simulations are performed on a 3-DOF parallel robot driven by four cables for validation. Results show that the proposed calibration method could precisely find the real coordinate values of the attachment points, with errors less than 10 − 12 mm. Trajectory simulations also indicate that the positioning accuracy of the cable-driven parallel robot (CDPR) could be greatly improved after calibration using the proposed method.


2016 ◽  
Vol 8 (4) ◽  
Author(s):  
Han Yuan ◽  
Eric Courteille ◽  
Dominique Deblaise

This paper addresses the force distribution of redundantly actuated cable-driven parallel robots (CDPRs). A new and efficient method is proposed for the determination of the lower-boundary of cable forces, including the pose-dependent lower-boundaries. In addition, the effect of cable sag is considered in the calculation of the force distribution to improve the computational accuracy. Simulations are made on a 6DOF CDPR driven by eight cables to demonstrate the validity of the proposed method. Results indicate that the pose-dependent lower-boundary method is more efficient than the fixed lower-boundary method in terms of minimizing the motor size and reducing energy consumption.


2021 ◽  
pp. 107754632110514
Author(s):  
Zhengsheng Chen ◽  
Xuesong Wang ◽  
Yuhu Cheng

This paper proposed a novel finite-time disturbance observer-based recursive fractional-order sliding mode control (FTRFOSMC) algorithm under disturbances and input saturation for redundantly actuated cable driving parallel robots (RCDPRs). A recursive fractional-order sliding mode surface composed of the fractional-order non-singular fast terminal sliding mode function and an integral term is constructed, and the fast response convergence and high precision tracking performance can be obtained for the recursive characteristics of the proposed sliding mode surface; meanwhile, an auxiliary system is designed to overcome the adverse effects of the input saturation. Then, to compensate the model uncertainty and external disturbances, an adaptive finite-time disturbance observer is developed, and the estimation error can be stabilized in finite-time for unknown bound of the disturbance and its derivative. The stability of the proposed controller was investigated by the Lyapunov stability theory. Finally, numerical simulations with the software of the MATLAB/Simuink are conducted to verify the effectiveness of the proposed controller.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 56867-56879
Author(s):  
Fei Zhang ◽  
Weiwei Shang ◽  
Bin Zhang ◽  
Shuang Cong

Sign in / Sign up

Export Citation Format

Share Document