Lie Group Machine Learning and Gibbs Density on Poincaré Unit Disk from Souriau Lie Groups Thermodynamics and SU(1,1) Coadjoint Orbits

Author(s):  
Frédéric Barbaresco
Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 840 ◽  
Author(s):  
Frédéric Barbaresco

We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric. This Lie groups thermodynamics is the bedrock for Lie group machine learning providing a full covariant maximum entropy Gibbs density based on representation theory (symplectic structure of coadjoint orbits for Souriau non-equivariant model associated to a class of co-homology).


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 498 ◽  
Author(s):  
Frédéric Barbaresco ◽  
François Gay-Balmaz

In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in quantum information geometry. We emphasize the role of equivariance with respect to Lie group actions and the role of several concepts from geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets with cocycles, as unifying structures appearing in various applications of this framework to information geometry and machine learning. For instance, we discuss the expression of the Fisher metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as a Casimir function to apply a geometric model for energy preserving entropy production. We illustrate this framework with several examples including multivariate Gaussian probability densities, and the Bogoliubov-Kubo-Mori metric as a quantum version of the Fisher metric for quantum information on coadjoint orbits. We exploit this geometric setting and Lie group equivariance to present symplectic and multisymplectic variational Lie group integration schemes for some of the equations associated with Souriau symplectic and polysymplectic models, such as the Lie-Poisson equation with cocycle.


2019 ◽  
Vol 110 (1) ◽  
pp. 43-59
Author(s):  
Rauan Akylzhanov ◽  
Alexis Arnaudon

AbstractWe propose a general framework to contract unitary dual of Lie groups via holomorphic quantization of their coadjoint orbits, using geometric quantization. The sufficient condition for the contractibility of a representation is expressed via cocycles on coadjoint orbits. This condition is verified explicitly for the contraction of SU$$_2$$2 into $$\mathbb {H}$$H. We construct two types of contractions that can be implemented on every matrix Lie group with diagonal contraction matrix.


Author(s):  
Frédéric Barbaresco ◽  
François Gay-Balmaz

In this paper we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau's symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in quantum information geometry. We emphasize the role of equivariance with respect to Lie group actions and the role of several concepts from geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets with cocycles, as unifying structures appearing in various applications of this framework to information geometry and machine learning. For instance, we discuss the expression of the Fisher metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as a Casimir function to apply a geometric model for energy preserving entropy production. We illustrate this framework with several examples including multivariate Gaussian probability densities, and the Bogoliubov-Kubo-Mori metric as a quantum version of the Fisher metric for quantum information on coadjoint orbits. We exploit this geometric setting and Lie group equivariance to present symplectic and multisymplectic variational Lie group integration schemes for some of the equations associated to Souriau symplectic and polysymplectic models, such as the Lie-Poisson equation with cocycle.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


2006 ◽  
Vol 84 (10) ◽  
pp. 891-904
Author(s):  
J R Schmidt

The Kahler geometry of minimal coadjoint orbits of classical Lie groups is exploited to construct Darboux coordinates, a symplectic two-form and a Lie–Poisson structure on the dual of the Lie algebra. Canonical transformations cast the generators of the dual into Dyson or Holstein–Primakoff representations.PACS Nos.: 02.20.Sv, 02.30.Ik, 02.40.Tt


2013 ◽  
Vol 12 (08) ◽  
pp. 1350055
Author(s):  
SONIA L'INNOCENTE ◽  
FRANÇOISE POINT ◽  
CARLO TOFFALORI

Given a compact linear Lie group G, we form a natural expansion of the theory of the reals where G and the graph of a logarithm function on G live. We prove its effective model-completeness and decidability modulo a suitable variant of Schanuel's Conjecture.


2013 ◽  
Vol 10 (07) ◽  
pp. 1320011 ◽  
Author(s):  
FATMA KARAKUŞ ◽  
YUSUF YAYLI

In this study, Fermi–Walker derivative, Fermi–Walker parallelism, non-rotating frame, Fermi–Walker termed Darboux vector concepts are given for Lie groups in E4. First, we get any Frénet curve and any vector field along the Frénet curve in a Lie group. Then, the Fermi–Walker derivative is defined for the Lie group. Fermi–Walker derivative and Fermi–Walker parallelism are analyzed in Lie groups. Finally, the necessary conditions for Fermi–Walker parallelism are explained.


Sign in / Sign up

Export Citation Format

Share Document