A Nonsqueezing Torque Distribution Method for an Omnidirectional Mobile Robot with Powered Castor Wheels

Author(s):  
Wenji Jia ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
Qiang Liu ◽  
Zaojun Fang ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4417 ◽  
Author(s):  
Jia ◽  
Yang ◽  
Wang ◽  
Zhang ◽  
Chen ◽  
...  

A mobile robot with no less than two powered caster wheels (PCWs) has the ability to perform omnidirectional motions and belongs to a redundantly actuated system. Redundant actuation will bring the issue of non-uniqueness of actuating torque distribution, and inappropriate choices of torque distribution schemes will lead to unexpected large required actuating torques and extra energy consumption. This paper proposes a new torque distribution optimization approach based on a gradient projection method (GPM) for the omnidirectional mobile robot (OMR) with direct drive PCWs. It can significantly reduce the maximal required actuating torque and the energy consumption of the system. The modular kinematic and dynamic modeling method is presented first, which is suitable for an arbitrary number of employed PCWs, as well as their install positions in the chassis. The detailed energy consumption model of the OMR, including output energy consumption and electrical energy loss, is formulated through experimental testing. The effectiveness of the proposed algorithms is validated by simulation examples. Lastly, the computational efficiency of the method is verified


ROBOT ◽  
2012 ◽  
Vol 34 (2) ◽  
pp. 144 ◽  
Author(s):  
Changlong YE ◽  
Huaiyong LI ◽  
Shugen MA ◽  
Huichao NI

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Mahmood Reza Azizi ◽  
Alireza Rastegarpanah ◽  
Rustam Stolkin

Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles.


1999 ◽  
Vol 17 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Jun Tang ◽  
Keigo Watanabe ◽  
Katsutoshi Kuribayashi ◽  
Yamato Shiraishi

2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Sign in / Sign up

Export Citation Format

Share Document