Apple Seed Oil

2020 ◽  
pp. 61-65
Author(s):  
Sabine Krist
Keyword(s):  
Seed Oil ◽  
Author(s):  
Abdalbasit Adam Mariod ◽  
Mohamed Elwathig Saeed Mirghani ◽  
Ismail Hussein
Keyword(s):  
Seed Oil ◽  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Siddalingappa R. Hotti ◽  
Omprakash D. Hebbal

This paper presents the production of biodiesel from nonedible, renewable sugar apple seed oil and its characterization. The studies were carried out on transesterification of oil with methanol and sodium hydroxide as catalyst for the production of biodiesel. The process parameters such as catalyst concentration, reaction time, and reaction temperature were optimized for the production of sugar apple biodiesel (SABD). The biodiesel yield of 95.15% was noticed at optimal process parameters. The fuel properties of biodiesel produced were found to be close to that of diesel fuel and also they meet the specifications of ASTM standards.


2021 ◽  
Vol 25 (8) ◽  
pp. 1365-1369
Author(s):  
D.T. Adeyemi ◽  
A. Saleh ◽  
F.B. Akande ◽  
O.O. Oniya ◽  
F.A. Ola

The objective of this study was to determine the fuel properties of Sand Apple Ethyl Ester (SAEE) and its blends with Automotive Gas Oil (AGO).using eggshell as catalyst. Sand apple seed oil (SASO) obtained was characterized based on America Society for Testing and Material (ASTM D6751) to determine acid value, saponification, iodine content, density, kinematic viscosity, flash point, cloud point and pour point. Sand Apple fruits were processed and oil extracted using solvent extraction method. Raw eggshells were calcined at 800oC for 120 min in the muffle furnace. SAEE was blended with AGO at 5 – 25 % mix. Data obtained was analyzed using ANOVA at P < 0.05 significant level. Cloud and pour points obtained for SASO are 4.68 and 3.09℃ . Flash point was 103℃ which fell within ASTM D93 range indicating that SASO is safe for handling and storage. Heating value was 42.61 MJ/kg, slightly lower than that of diesel oil of 44.8 MJ/kg shows that AGO has ability to produce heat of combustion than SASO. Iodine value was 80.71 g I/100g while acid value was determined to be 2.62 mgKOH/g, which was higher than that of ASTM D6751 of 0.5 mgKOH/g. Sulphur contents for AGO and SASO–AGO blends were 0.006, 0.009, 0.014, 0.016 and 0.004%, respectively. Low sulphur values indicates that hazardous sulphur dioxide emission of SAEE has reduced. This study established that all the properties obtained, except acid value, fell within the ASTM specification and could suitably be compared with those of fossil diesel.


Author(s):  
S. Ashokkumar ◽  
A Elanthiraiyan ◽  
S. Shagu ◽  
M. Srinivasan ◽  
K. B. Deepan

2018 ◽  
Vol 141 ◽  
pp. 128-136 ◽  
Author(s):  
Fernando Montañés ◽  
Owen J. Catchpole ◽  
Stephen Tallon ◽  
Kevin A. Mitchell ◽  
Dawn Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document