2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


2020 ◽  
Author(s):  
Doruk Pancaroglu

Artist, year and style classification of fine-art paintings are generally achieved using standard image classification methods, image segmentation, or more recently, convolutional neural networks (CNNs). This works aims to use newly developed face recognition methods such as FaceNet that use CNNs to cluster fine-art paintings using the extracted faces in the paintings, which are found abundantly. A dataset consisting of over 80,000 paintings from over 1000 artists is chosen, and three separate face recognition and clustering tasks are performed. The produced clusters are analyzed by the file names of the paintings and the clusters are named by their majority artist, year range, and style. The clusters are further analyzed and their performance metrics are calculated. The study shows promising results as the artist, year, and styles are clustered with an accuracy of 58.8, 63.7, and 81.3 percent, while the clusters have an average purity of 63.1, 72.4, and 85.9 percent.


2018 ◽  
Vol 10 (10) ◽  
pp. 1636 ◽  
Author(s):  
Diogo Duarte ◽  
Francesco Nex ◽  
Norman Kerle ◽  
George Vosselman

Remote sensing images have long been preferred to perform building damage assessments. The recently proposed methods to extract damaged regions from remote sensing imagery rely on convolutional neural networks (CNN). The common approach is to train a CNN independently considering each of the different resolution levels (satellite, aerial, and terrestrial) in a binary classification approach. In this regard, an ever-growing amount of multi-resolution imagery are being collected, but the current approaches use one single resolution as their input. The use of up/down-sampled images for training has been reported as beneficial for the image classification accuracy both in the computer vision and remote sensing domains. However, it is still unclear if such multi-resolution information can also be captured from images with different spatial resolutions such as imagery of the satellite and airborne (from both manned and unmanned platforms) resolutions. In this paper, three multi-resolution CNN feature fusion approaches are proposed and tested against two baseline (mono-resolution) methods to perform the image classification of building damages. Overall, the results show better accuracy and localization capabilities when fusing multi-resolution feature maps, specifically when these feature maps are merged and consider feature information from the intermediate layers of each of the resolution level networks. Nonetheless, these multi-resolution feature fusion approaches behaved differently considering each level of resolution. In the satellite and aerial (unmanned) cases, the improvements in the accuracy reached 2% while the accuracy improvements for the airborne (manned) case was marginal. The results were further confirmed by testing the approach for geographical transferability, in which the improvements between the baseline and multi-resolution experiments were overall maintained.


2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


Sign in / Sign up

Export Citation Format

Share Document