SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks

Author(s):  
Luis Álvarez Almeida ◽  
Juan C. Martinez-Santos
2019 ◽  
Vol 8 (4) ◽  
pp. 4668-4671

A Distributed denial of Service attacks(DDoS) is one of the major threats in the cyber network and it attacks the computers flooded with the Users Data Gram packet. These types of attacks causes major problem in the network in the form of crashing the system with large volume of traffic to attack the victim and make the victim idle in which not responding the requests. To detect this DDOS attack traditional intrusion detection system is not suitable to handle huge volume of data. Hadoop is a frame work which handles huge volume of data and is used to process the data to find any malicious activity in the data. In this research paper anomaly detection technique is implemented in Map Reduce Algorithm which detects the unusual pattern of data in the network traffic. To design a proposed model, Map Reduce platform is used to hold the improvised algorithm which detects the (DDoS) attacks by filtering and sorting the network traffic and detects the unusual pattern from the network. Improvised Map reduce algorithm is implemented with Map Reduce functionalities at the stage of verifying the network IPS. This Proposed algorithm focuses on the UDP flooding attack using Anomaly based Intrusion detection system technique which detects kind of pattern and flow of packets in the node is more than the threshold and also identifies the source code causing UDP Flood Attack.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Özge Cepheli ◽  
Saliha Büyükçorak ◽  
Güneş Karabulut Kurt

Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.


2020 ◽  
Vol 10 (1) ◽  
pp. 220-230
Author(s):  
Shubhra Dwivedi ◽  
Manu Vardhan ◽  
Sarsij Tripathi

AbstractDistributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks. The intruder’s ability to deal with the power of various cooperating devices to instigate an attack makes its administration even more multifaceted. This complexity can be further increased while lots of intruders attempt to overload an attack against a device. To counter and defend against modern DDoS attacks, several effective and powerful techniques have been used in the literature, such as data mining and artificial intelligence for the intrusion detection system (IDS), but they have some limitations. To overcome the existing limitations, in this study, we propose an intrusion detection mechanism that is an integration of a filter-based selection technique and a machine learning algorithm, called information gain-based intrusion detection system (IGIDS). In addition, IGIDS selects the most relevant features from the original IDS datasets that can help to distinguish typical low-speed DDoS attacks and, then, the selected features are passed on to the classifiers, i.e. support vector machine (SVM), decision tree (C4.5), naïve Bayes (NB) and multilayer perceptron (MLP) to detect attacks. The publicly available datasets as KDD Cup 99, CAIDA DDOS Attack 2007, CONFICKER worm, and UNINA traffic traces, are used for our experimental study. From the results of the simulation, it is clear that IGIDS with C4.5 acquires high detection and accuracy with a low false-positive rate.


Sign in / Sign up

Export Citation Format

Share Document