scholarly journals Distributed Denial-of-Service Prediction on IoT Framework by Learning Techniques

2020 ◽  
Vol 10 (1) ◽  
pp. 220-230
Author(s):  
Shubhra Dwivedi ◽  
Manu Vardhan ◽  
Sarsij Tripathi

AbstractDistributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks. The intruder’s ability to deal with the power of various cooperating devices to instigate an attack makes its administration even more multifaceted. This complexity can be further increased while lots of intruders attempt to overload an attack against a device. To counter and defend against modern DDoS attacks, several effective and powerful techniques have been used in the literature, such as data mining and artificial intelligence for the intrusion detection system (IDS), but they have some limitations. To overcome the existing limitations, in this study, we propose an intrusion detection mechanism that is an integration of a filter-based selection technique and a machine learning algorithm, called information gain-based intrusion detection system (IGIDS). In addition, IGIDS selects the most relevant features from the original IDS datasets that can help to distinguish typical low-speed DDoS attacks and, then, the selected features are passed on to the classifiers, i.e. support vector machine (SVM), decision tree (C4.5), naïve Bayes (NB) and multilayer perceptron (MLP) to detect attacks. The publicly available datasets as KDD Cup 99, CAIDA DDOS Attack 2007, CONFICKER worm, and UNINA traffic traces, are used for our experimental study. From the results of the simulation, it is clear that IGIDS with C4.5 acquires high detection and accuracy with a low false-positive rate.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Özge Cepheli ◽  
Saliha Büyükçorak ◽  
Güneş Karabulut Kurt

Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ivandro Ortet Lopes ◽  
Deqing Zou ◽  
Francis A Ruambo ◽  
Saeed Akbar ◽  
Bin Yuan

Distributed Denial of Service (DDoS) is a predominant threat to the availability of online services due to their size and frequency. However, developing an effective security mechanism to protect a network from this threat is a big challenge because DDoS uses various attack approaches coupled with several possible combinations. Furthermore, most of the existing deep learning- (DL-) based models pose a high processing overhead or may not perform well to detect the recently reported DDoS attacks as these models use outdated datasets for training and evaluation. To address the issues mentioned earlier, we propose CyDDoS, an integrated intrusion detection system (IDS) framework, which combines an ensemble of feature engineering algorithms with the deep neural network. The ensemble feature selection is based on five machine learning classifiers used to identify and extract the most relevant features used by the predictive model. This approach improves the model performance by processing only a subset of relevant features while reducing the computation requirement. We evaluate the model performance based on CICDDoS2019, a modern and realistic dataset consisting of normal and DDoS attack traffic. The evaluation considers different validation metrics such as accuracy, precision, F1-Score, and recall to argue the effectiveness of the proposed framework against state-of-the-art IDSs.


2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1210 ◽  
Author(s):  
Khraisat ◽  
Gondal ◽  
Vamplew ◽  
Kamruzzaman ◽  
Alazab

The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack to the end nodes. Due to the large number and diverse types of IoT devices, it is a challenging task to protect the IoT infrastructure using a traditional intrusion detection system. To protect IoT devices, a novel ensemble Hybrid Intrusion Detection System (HIDS) is proposed by combining a C5 classifier and One Class Support Vector Machine classifier. HIDS combines the advantages of Signature Intrusion Detection System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). The aim of this framework is to detect both the well-known intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed HIDS is evaluated using the Bot-IoT dataset, which includes legitimate IoT network traffic and several types of attacks. Experiments show that the proposed hybrid IDS provide higher detection rate and lower false positive rate compared to the SIDS and AIDS techniques.


2019 ◽  
Vol 8 (4) ◽  
pp. 4668-4671

A Distributed denial of Service attacks(DDoS) is one of the major threats in the cyber network and it attacks the computers flooded with the Users Data Gram packet. These types of attacks causes major problem in the network in the form of crashing the system with large volume of traffic to attack the victim and make the victim idle in which not responding the requests. To detect this DDOS attack traditional intrusion detection system is not suitable to handle huge volume of data. Hadoop is a frame work which handles huge volume of data and is used to process the data to find any malicious activity in the data. In this research paper anomaly detection technique is implemented in Map Reduce Algorithm which detects the unusual pattern of data in the network traffic. To design a proposed model, Map Reduce platform is used to hold the improvised algorithm which detects the (DDoS) attacks by filtering and sorting the network traffic and detects the unusual pattern from the network. Improvised Map reduce algorithm is implemented with Map Reduce functionalities at the stage of verifying the network IPS. This Proposed algorithm focuses on the UDP flooding attack using Anomaly based Intrusion detection system technique which detects kind of pattern and flow of packets in the node is more than the threshold and also identifies the source code causing UDP Flood Attack.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 106 ◽  
Author(s):  
Pedro Manso ◽  
José Moura ◽  
Carlos Serrão

The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Denial of Service (DDoS) attacks that try to explore those security weaknesses. We design and implement a Software-Defined Intrusion Detection System (IDS) that reactively impairs the attacks at its origin, ensuring the “normal operation” of the network infrastructure. Our proposal includes an IDS that automatically detects several DDoS attacks, and then as an attack is detected, it notifies a Software Defined Networking (SDN) controller. The current proposal also downloads some convenient traffic forwarding decisions from the SDN controller to network devices. The evaluation results suggest that our proposal timely detects several types of cyber-attacks based on DDoS, mitigates their negative impacts on the network performance, and ensures the correct data delivery of normal traffic. Our work sheds light on the programming relevance over an abstracted view of the network infrastructure to timely detect a Botnet exploitation, mitigate malicious traffic at its source, and protect benign traffic.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1926-1931

Intrusion detection system (IDS) is one of the essential security mechanisms against attacks in WSN. Network intrusion detection system (NIDS) generally uses the classification techniques in order to obtain the best possible accuracy and attack detection rate. In this paper, Intrusion Detection System is designed which uses two-stage hybrid classification method. In the first stage it uses Support Vector Machine (SVM) as anomaly detection, and in the second stage it uses Random Forest (RF)/Decision Tree (DT) as misuse. The abnormal activities are detected in the first stage. These abnormal activities are further analyzed and the known attacks are identified in the second stage and are classified as Denial of Service (DoS) attack, Probe attack, Remote to Local (R2L) attack and User to Root (U2R) attack. Simulation results reveal that the proposed hybrid algorithm obtains better accuracy and detection rate than the single classifier namely, SVM, RF and DT algorithm. The experimental results also shows that hybrid algorithm can detect anomaly activity in a reliable way. Proposed technique uses the standard NSL KDD dataset to evaluate/calculate the performance of the proposed approach. Here the results show that the proposed Hybrid SVM-RF/DT IDS technique performs better in terms of detection rate, accuracy and recall than the existing SVM, RF and DT approaches.


Intrusion Detection System observes the network traffic and identifies the attack and also inform the admin to corrective action. Powerful Intrusion Detection system is required for detection to various modern attack. There is need of efficient Intrusion Detection system .The focus of IDS research is the application of machine Learning and Deep Learning techniques. Projected work is combination of Deep Learning Technique in which Non Symmetric Deep Auto Encoder and Machine Learning Algorithm, Support Vector Machine Classifier is used to develop the Model. Stack power of the Non symmetric Deep Auto Encoder and Quickness with exactness of the SVM makes the Model very efficient. This Model not only improves the accuracy value but also improve recall and precision. It also cause the reduction of training time .To evaluate the performance of the Model and do the analysis the special Data set which are used are KDD CUP and NSL KDD Dataset.


Sign in / Sign up

Export Citation Format

Share Document